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List of symbols 

 

A: cross section in Darcy’s law (m2) 

a: upstream horizontal length in dam scenarios (m) 

a1, a2, …: constants in Muskat’s flow experiment // constants in NMS definition  

b: downstream horizontal length in dam scenarios (m) 

Bat: battery 

C: constant in Darcy’s law (m/s)// capacity (F)// application point of the uplift force in dam 
scenarios (dimensionless) 

c: application point of the uplift force in dam scenarios (m) 

C1, C2…: constants in Muskat’s experiments 

c1: capacity constant (F) 

CDS: application point of the force on the downstream side of the sheet pile (dimensionless) 

cDS: application point of force on the downstream side of the sheet pile (m) 

Co: constant in Darcy’s law (m/kg/s) 

cs: location of the sheet pile under the dam in dam scenarios (m) 

CUS: application point of the force on the upstream side of the sheet pile (dimensionless) 

cUS: application point of the force on the upstream side of the sheet pile (m) 

d: average grain size (m)// length of the dam foundation (m) 

d: derivative 

ds: sheet pile length in dam scenarios (m) 

e: void ratio (dimensionless) 

F, F1, F2 …: unknown functions 

FDS: force on the downstream side of the sheet pile (N) 
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Fext: external force (N) 

FUS: force on the upstream side of the sheet pile (N) 

g: gravity constant (m/s2) 

G: voltage controlled current source 

H: stratum thickness in dam scenarios (m)// initial water head in well scenarios (m) 

h: water head or hydraulic potential (m) 

h1: water head upstream the dam in dam scenarios (m) 

h2: water head downstream the dam in dam scenarios (m) 

hs: seepage surface (m) 

hw: water head in the well in well scenarios (m) 

I: electric intensity (A) 

i: hydraulic gradient (dimensionless) 

ie: exit gradient (dimensionless) 

Ie,ave: average exit gradient (dimensionless) 

J: electric current (A) 

k: permeability (m2)  

l*: reference length (m) 

l: length (m) 

L: length of the medium in Darcy’s law (m)// length dimension (m)// length of the medium in 
scenarios of dams in infinite medium 

lh: horizontal length for the calculation of Ie,ave (m) 

lv: vertical length for the calculation of Ie,ave (m) 

Lwc: water head dimension (m) 

lx,95: horizontal characteristic length for 95% of flow (m) 

Lx,95: horizontal characteristic length for 95% of flow (dimensionless) 

lx,90: horizontal characteristic length for 90% of flow (m) 
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Lx,90: horizontal characteristic length for 90% of flow (dimensionless) 

ly,95: vertical characteristic length for 95% of flow (m) 

Ly,95: vertical characteristic length for 95% of flow (dimensionless) 

ly,90: vertical characteristic length for 90% of flow (m) 

Ly,90: vertical characteristic length for 90% of flow (dimensionless) 

M: mass dimension (kg) 

m: constant in Network Simulation Method 

n: orthogonal direction// constant in Network Simulation Method// power in of Muskat’s flow 
experiments 

p: pressure (N/m2) 

Q: water flow (m3/s) 

q: water flow in 2-D (m2/s) 

R: aquifer radius in well scenarios (m)// duct radius in porous media (m) 

R: resistance value (Ω) 

r: spatial direction (radial) 

Re: Reynolds number (dimensionless) 

Rinf: influence radius in well scenarios 

rw: well radius in well scenarios (m) 

s: length of the water column in Muskat’s flow experiment (m)// studied direction  

S: switch// surface (m2) 

Sw: switch 

T: time dimension (s) 

t: time variable (s) 

u: pore pressure (kPa) 

UF: uplift force (kN) 

V: electric voltage (V) 
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v: velocity (m/s) 

Vext: potential energy (J) 

wd: dam width in dam scenarios (m) 

ws: sheet pile width in dam scenarios (m) 

x: spatial direction (usually horizontal) 

y: spatial direction (vertical in 2-D problems or horizontal in 3-D problems) 

z: spatial direction (vertical in 3-D problems) 

α: spatial direction (angular) 

γ: water unit weight (N/m3) 

γf: unit weight of a fluid (N/m3) 

∂: partial derivative 

Δ: variation  

Θ: combination of φ and Ψ// dimension of g·h 

κ: hydraulic conductivity (m/s) 

μ: dynamic viscosity (P) 

π: dimensionless group or monomial (dimensionless) 

ρ: density (kg/m3 

φ: velocity potential (m2/s)// Dimension of ρ·g·h 

Ψ: stream function variable (m2/s) 

: addend in a governing equation// water head dimensions (m)  

ξ: statistic error in well inverse problem (%) 

: friction factor (dimensionless) 

∇: gradient mathematical operator  

∇ଶ: gradient mathematical operator  
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ΓQ: deviation for water flow variable in well inverse problem 

Γhs: deviation for seepage surface in well inverse problem 

{}: denotes dimensional basis 

{{}}: denotes list of relevant variables and parameters 

Subscript and superscript 

→: direction of the flow in porous media 

vis: direction orthogonal to → in porous media 

n: direction orthogonal to → and vis 

average: average value of the variable 

‘: dimensionless variable 

pre-ine: related to pressure and inertial forces 

pre-vis: related to pressure and viscous forces 

ine-vis: related to inertial and viscous forces 

x, y, z, r: related to spatial directions 

i: related to horizontal direction 

j, k: related to vertical direction 

ref: related to a reference value of a variable 

nondim: related to a dimensionless variable 

sim: related to simulation values in well inverse problem with WaWSim 

real: related to real values in well inverse problem 

initial: related to initial values of hydraulic conductivity in well inverse problem 

ξ: related to the statistic error in well inverse problem 

cal: related to calculated values in well inverse problem with dimensionless abaci 

Hall: related to Hall’s experiment 

Harr: related to Harr’s theoretical results 
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Abstract 

 

 

The main objective of this thesis is the search and verification of the dimensionless groups that 

govern the geotechnical problems of flow through porous media under gravity dams with or 

without a sheet pile at its base and groundwater flow in unconfined aquifers due to a pumping 

well. The aim is to find the groups which the dimensionless unknowns of interest depend on. 

These unknowns (groundwater flow, pore pressure, average exit gradient, seepage surface, etc) 

change according to the chosen scenario. The methodology to obtain these groups is the 

discriminated nondimensionalization of the governing equation. The solutions are displayed in 

universal abaci that depict values of monomial and dimensionless variables. The curves have 

been represented after carrying out a large number of simulations by models, also shown in the 

thesis, that have been specifically designed according to the network method. Chapter I 

thoroughly explains the objectives of the thesis.  

Chapter II gathers the theoretical fundaments of the thesis. Firstly, references and different 

governing equations of flow through porous media are presented. It is basically focused on the 

scenarios studied throughout the thesis. In the following section, discriminated 

nondimensionalization is explained: different aspects, steps to apply the technique and 

examples in which it has been employed. Afterwards, a historical overview of electrical analogy 

is presented, with different application examples. In the following section, the bases of the 

network simulation method are presented, as well as examples of engineering problems in 

which this methodology has been successfully applied. The rest of the sections of the second 

chapter show the tools that have been used for the development of the compute programs 

employed for characterizing the problems researched in this thesis, Ngspice (software for 
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compilation) and Matlab (programming language for creating the models in text files and 

graphically processing the solutions).  

Chapter III consists in a study of the dimensions of the soil parameters that are related to flow 

through porous media, that is permeability and hydraulic conductivity. The chapter starts 

revising the few references where the quantities involved in permeability are contemplated 

employing classical dimensional analysis, according to which quantities are measured in the 

same unit independently to the spatial direction in which they are measured. No satisfactory 

conclusion is reached, and the same happened when applying discriminated dimensional 

characterization, a methodology with which quantities are considered as distinct when 

measured in different directions or if they are of diverse nature. For this reason, the parameters 

are studied introducing quantities related to flow energy in the dimensional basis of the 

phenomenon, which does allow characterizing the units of hydraulic conductivity in terms of 

energy. 

Chapter IV presents the application of dimensional nondimensionalization to different scenarios 

of flow through porous media: flow under gravity dams without a sheet pile, flow under gravity 

dams with a sheet pile located at its base, flow under dams in infinite media and flow in 

unconfined aquifers due to a pumping well. For each of these scenarios, governing equations, 

monomials ruling the phenomenon and groups involving unknowns are presented and universal 

abaci obtained from numerous simulations are depicted. Moreover, for the last problem there 

is a table where it is demonstrated that, for the same dimensionless scenario (although the 

values of the dimensional variables are different) the dimensionless unknowns remind the same. 

Chapter V collects the models designed for the scenarios studied in this thesis: their boundary 

conditions, the cell structure, etc. The models, which are written as text files, include devices 

and routines that provide the unknown variables of interest for each of the scenarios as output 

information. Two codes have been developed: DamSim for flow under dams and WaWSim for 

flow due to a pumping well. Both simulation tools, in a Windows environment, are free, potent 

and reliable. Matlab codes have been employed for programming the model text files and the 

interfaces, and Ngspice for numerical simulation.  

Chapter VI shows an inverse problem in which radial and vertical conductivities in a free aquifer 

are calculated from field’s measurements in a pumping well. The problem is studied from two 

points of view: employing the universal abaci and the designed code. In both cases, the errors 

between real and estimated values are calculated. After this, a study has been carried out in 
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order to understand the effect of possible measure errors in the filed variables on the deviations 

of the estimated hydraulic conductivity values.  

Chapter VII presents a set of applications: i) flow under gravity dams without a sheet pile; ii) flow 

under gravity dams with a sheet pile located at its base; and iii) flow in unconfined aquifers due 

to a pumping well. In addition, for each of the scenarios one of the variables have been 

compared with analytical or experimental results that can be found in references.  
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Resumen 

 

 

El objetivo principal de esta tesis es la búsqueda y verificación de los grupos adimensionales que 

gobiernan los problemas geotécnicos de flujo a través de medios porosos bajo presas de 

gravedad con o sin tablaestaca en su base y flujo de agua en acuíferos libres debido a un pozo 

de bombeo. La finalidad es encontrar los grupos de los que dependen las incógnitas 

adimensionales de interés. Estas incógnitas (caudal, presión intersticial, gradiente medio a la 

salida, superficie de rezume, etc.) cambian de acuerdo con el escenario elegido. La metodología 

para obtener estos grupos es la adimensionalización discriminada de la ecuación de gobierno. 

Las soluciones se muestran en ábacos universales en los que se dibujan los valores de los 

monomios y las variables adimensionales. Las curvas se han representado después de llevar a 

cabo una gran cantidad de simulaciones mediante modelos, también presentados en esta tesis, 

que han sido diseñados específicamente de acuerdo con el método de redes. El Capítulo I explica 

los objetivos de la tesis en detalle.  

El Capítulo II recoge los fundamentos teóricos de la tesis. Primero se presentan referencias y 

diferentes ecuaciones de gobierno para problemas de flujo en medios porosos. Básicamente se 

centra en los escenarios estudiados a lo largo de la tesis. En la siguiente sección se explica la 

adimensionalización discriminada: los diferentes aspectos, pasos para aplicar la técnica y 

ejemplos en los que se ha empleado. Después se presenta un repaso histórico de la analogía 

eléctrica, con diferentes ejemplos de aplicación. En la siguiente sección se muestra la base del 

método de simulación por redes, así como ejemplos de problemas de ingeniería en los que la 

metodología se ha aplicado satisfactoriamente. El resto de las secciones del segundo capítulo 

muestran las herramientas que se han usado para el desarrollo de los programas informáticos 
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empleados para caracterizar los problemas investigados en esta tesis, Ngspice (software para 

los cálculos) y Matlab (lenguaje de programación para crear los modelos en archivos de texto y 

graficar los resultados).  

El Capítulo III consiste en el estudio de las dimensiones de parámetros del suelo relacionados 

con el flujo a través del medio porosos, que son la permeabilidad y la conductividad hidráulica. 

El capítulo comienza revisando las escasas referencias en las que se contemplan las magnitudes 

que participan en la permeabilidad empleando el análisis dimensional clásico, de acuerdo al cual 

las magnitudes se miden en la misma unidad independientemente de la dirección espacial en la 

que se midan. No se llegan a conclusiones satisfactorias, y lo mismo ocurre cuando se aplica la 

caracterización adimensional discriminada, una metodología en la que las magnitudes se 

consideran distintas cuando se miden en diferentes direcciones o tienen diferente naturaleza. 

Por esta razón, los parámetros se estudian introduciendo en la base dimensional del fenómeno 

magnitudes relacionadas con la energía del flujo, lo que sí permite caracterizar las unidades de 

conductividad hidráulica en términos de energía.  

El Capítulo IV presenta la aplicación de la adimensionalización dimensional en diferentes 

escenarios de flujo en medios porosos: flujo bajo presas de gravedad sin tablaestaca, flujo bajo 

presas de gravedad con una tablaestaca en su base, flujo bajo presas en medios infinitos y flujo 

en acuíferos libres debido a un pozo de bombeo. Para cada uno de estos escenarios, se 

presentan las ecuaciones de gobierno, los monomios que controlan el fenómeno y los grupos 

en los que aparecen las incógnitas, y se dibujan ábacos universales tras numerosas simulaciones. 

Además, para el último problema hay una tabla en la que se demuestra que, para el mismo 

escenario adimensional (aunque los valores de las variables dimensionales sean diferentes) las 

incógnitas permanecen constantes.  

El Capítulo V recoge los modelos diseñados para los escenarios estudiados en esta tesis: sus 

condiciones de contorno, la estructura de la celda, etc. Los modelos, que se escriben como 

archivos de texto, incluyen componentes y rutinas que proporcionan las variables de interés 

para cada uno de los escenarios como información de salida. Se han desarrollado dos códigos: 

DamSim para flujo bajo presas y WaWSim para flujo debido a un pozo de bombeo. Ambas 

herramientas de simulación, en un entorno Windows, son libres, potentes y fiables. Los códigos 

de Matlab se han usado para programar el modelo en archivo de texto y las interfaces, y Ngpisce 

para la simulación numérica.  

El Capítulo VI muestra un problema inverso en el que se calculan las conductividades radial y 

vertical en un acuífero libre a partir de las medidas de campo en un acuífero libre. El problema 
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se estudia desde dos puntos de vista: empleando los ábacos universales y el código diseñado. 

En ambos casos se calculan las desviaciones entre los valores reales y estimados. Tras esto, se 

ha llevado a cabo un estudio para entender el efecto de posibles errores de medida de las 

variables de campo en las desviaciones de los valores de conductividad hidráulico estimado. 

El Capítulo VII presenta una serie de aplicaciones: i) flujo bajo presas de gravedad sin 

tablaestaca; ii) flujo bajo presas de gravedad con una tablaestaca en su base; y iii) flujo en 

acuíferos libres debido a un pozo de bombeo. Además, para cada uno de los escenarios una de 

las variables se ha comprado con resultados analíticos o experimentales que pueden 

encontrarse en referencias.  
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Chapter I. Introduction and objectives 

 

 

 

I.1 Introduction  

At the end of 2017, in my second year of the Master’s degree in Civil Engineering (Máster de 

Ingeniería de Caminos, Canales y Puertos) that I was studying in University of Cartagena 

(Universidad Politécnica de Cartagena), professor I. Alhama told me about a grant I could apply 

for to carry out a doctoral research. This grant (beca de Formación de Personal Investigador) 

was awarded by Séneca Foundation (Fundación Séneca de la Region de Murcia) and the thesis 

would be an investigation about flow through porous media and its dimensionless 

characterization.  

Therefore, in March 2018, once all the forms had been filled, the doctoral research could start. 

This overlapped with the last term of the master’s degree and the investigation that 

corresponded to the Master dissertation (which I also developed with professor I. Alhama). 

Certainly thanks to the help of my thesis director and the rest of colleagues from the research 

group ‘Network simulation’ (‘Simulación por redes’) in University of Cartagena (especially, to 

professor G. García), I sent two communications to an international congress about mathematics 

applied to science and engineering and finished my Master dissertation before 2018 was over.  

The research topic of my thesis was initially the dimensionless characterization of flow through 

anisotropic media, which, of course, encompasses a large number of possible scenarios. 
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Particularly, the chosen problems were those of flow under gravity dams and flow through earth 

dams. For this aim, some network models and numerical codes based on the electrical analogy 

through the network method were going to be developed. Nevertheless, although the study of 

flow under gravity dams was kept as an objective, it was finally decided that the second part of 

the thesis would be about problems of flow in unconfined aquifers due to a pumping well.  

During the first year of research, a reference review was carried out about the different 

problems finally approached. The two important references, whose content is still useful in spite 

of being old, are those texts of Harr [2012 its last version] and Muskat [1937] because both 

present useful graphics based on the classical dimensional characterization of these scenarios, 

especially for the calculation of flow under gravity dams. However, these authors only focused 

on isotropic soils. This widely justifies the contribution of this thesis, which is the dimensionless 

characterization of flow through anisotropic media (more realistic than isotropic soils) by 

procedures known as discriminated (more accurate than the classical approach). Moreover, 

during this first year, the development of a software for the simulation of flow under gravity 

dams was started.  

Flow under retaining structures exclusively consisting of a gravity dam leads to a lower number 

of boundary conditions than those of more complex structures. This allows simplifying the 

numerical code and narrowing down the number of dimensionless monomials that rule the 

solution of the problem. Modifying the software, problems of flow under dams with a sheet pile 

have been studied, a scenario that presents more boundary conditions and dimensionless 

groups that characterize it.  

The most complex problem that has been approached, from the point of view of dimensionless 

characterization and numerical simulation, has undoubtedly been that of flow in unconfined 

aquifers due to a pumping well. Modelling this problem employing the network method has 

required the use of modern (and almost ideal) circuit devices, as well as new configurations that 

do not appear in scientific literature yet. Aspects such as the introduction of cylindrical 2-D 

coordinates, the address seepage surface borders, the use of switches, etc, have been important 

challenges in the first versions of the code. However, once they have been overcome, we believe 

that it opens the door to more complex simulations (earth dams, use of more than one pumping 

well, optimization problems, lowering the piezometric level in excavations, etc). Once these 

models have been designed, the verification of the dimensionless groups derived from 

characterization has been relatively easy, allowing representing solutions by new universal 

curves or abaci after numerous simulations.  
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Due to the experience of the ‘Network simulation’ research group in designing codes that are 

useful for engineers and future researches, it was also initially thought to collect the models and 

codes created in this investigation in two open software that allow future users to apply them 

in practical problems. The new software, DamSim and WaWSim, which present all the advantage 

of a modern computer software (communication environment with windows, parameters 

introduced by the user, a graphic environment for the solutions, etc), are the result of this work.  

Alongside this research, whose final aim has been to obtain universal solutions as abaci, a 

theoretical study about the dimensional character of permeability and hydraulic conductivity 

parameters has been carried out. This study justifies how non-classical groups with these 

parameters emerge in anisotropic media. Undoubtedly, we believe that it is one of the new 

results that allows reducing the number of monomials in these scenarios and, in this way, also 

reduces the number of curves or abaci which present the universal solutions.  

All in all, we can summarize the investigation lines of this thesis in the following: 

i) Dimensionless characterization and nondimensionalization of governing equations 

(Laplace-type equations with different boundary conditions), including spatial and 

general discrimination concepts, which allows deducing the dimensionless groups 

that rule the solution of the studied problems, all this supported by Pi theorem. 

ii) Design of a numerical model based on the network method as an accurate 

simulation tool.  

iii) Deepening in the dimensional character of anisotropic soil parameters in order to 

justify their correct use in the dimensionless groups obtained by characterization.  

Figure 1.1 is a conceptual scheme of the thesis content.  

 
Figure 1.1. Research context of this Ph. D. thesis 
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I.2 Objectives 

The objective of this thesis can be summarized in the following points: 

i) Revising reference texts about problems of flow in porous media, especially 

scenarios of flow under gravity dams and flow to pumping wells in unconfined 

aquifers. Since these problems are different, the studied variables in each of them 

are different too. This revision should be aimed to find universal solutions. 

ii) Applying the discriminated nondimensionalization in problems of flow through 

porous media to obtain the groups that govern the solution of these scenarios. For 

both problems, flow under dams with or without a sheet pile in 2-D rectangular 

coordinates and problems of flow in unconfined aquifers due to a pumping well in 

2-D cylindrical coordinates. 

iii) Designing models for all the studied scenarios applying the network method. These, 

verified when possible, are run in free software for solving circuits (Ngspice) that 

include modern computational algorithms for giving almost exact solution of the 

circuit (the errors would only depend on the discretization). 

iv) Developing of software to simulate flow under concrete dams or sheet piles and 

flow to a pump well in unconfined aquifers 

v) Deepening in the dimensional character of permeability and hydraulic conductivity 

parameters, focusing on anisotropic soils.  

vi) Developing the inverse problem for scenarios of flow in unconfined aquifers using 

either a classic protocol which runs successive simulations until getting a convergent 

solution or the universal curves. 

The previous objectives will be illustrated with the following applications: 

 Rectangular scenario of flow under gravity dams without a sheet pile located in 

its base. 

 Rectangular scenario of flow under dams with a sheet pile located in its base.  

 Rectangular scenario of flow under dams in infinite media.  

 Cylindrical scenario of flow in unconfined aquifers due to a pumping well . 
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I.3 Perspectives 

The work presented in this thesis is not closed. Considering the geometry, either from the point 

of view of the numerical simulation or that of the characterization, the scenarios of flow under 

dams can increase by locating a larger number of sheet piles. Moreover, in scenarios of dams 

with a sheet pile, it is also interesting to plot curves where the overall resulting force on the pile 

and application point is presented, instead of using two different sets of abaci, one for the values 

for the upstream side of the pile and other for the downstream side. In the case of pumping 

wells in unconfined aquifers, transient-state scenarios could be studied, in order to search 

universal solutions and applications of inverse problems. These tasks would require more 

sophisticated models. Another interesting phenomenon to characterize and simulate is that 

known as re-wetting. Moreover, related to earth dams, it would also be interesting to approach 

the design of a code which allows representing the seepage surface for any kind of scenario in 

an accurate way.  

 

I.4 Methodology 

The methodology that describes each of the steps to must be taken to achieve the objectives 

proposed in the thesis are thoroughly presented in the corresponding sections (Chapters II, IV, 

V and VI). However, it is convenient to provide of a specific section in which the procedures are 

summarized. In this way, the reader can come back to the scheme at any moment and clarify 

the coherence of the document. The general methodological scheme is shown in Figure 1.2.  

When designing a network model, the first step involves searching for the equivalence between 

the governing equation of the scenario to be simulated and that of the electric phenomenon. In 

case of modelling problems of flow through porous media, the equivalence between the 

variables is stated between hydraulic potential, h, and voltage, V, and between the electric 

current, I, and groundwater flow, Q. According to this analogy, and applying Ohm’s law, the 

resistance expressions for resistors are obtained. Resistors are the basic devices that allow 

simulating the simplest phenomena. Other devices, such as switches and sources, are employed 

when trying to model more complex processes.  
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Figure 1.2. Methodology of the thesis 
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In order to carry out a simulation, the physical scenario must be discretized in cells, so each 

elemental volume of the medium is simulated with two resistors in each direction. The resistor 

expressions involve information about the cell size and the hydraulic conductivities. In this way, 

each cell is transformed into a circuit that is connected to the adjacent elemental volumes with 

ideal connexions. This information, together with the boundary conditions, is written in a text 

file, which is the input data for the software that carries out the calculations of the electric 

circuits. For this thesis, the chosen software for solving circuits is Ngspice.  

The solution of the circuits is the voltage in all the nodes of the cells and the electric current in 

each branch. Voltage values can be directly read using the correct command, while for obtaining 

intensity values, batteries of zero voltage are connected in those branches where the designer 

may consider that this information is important (for example, the battery can be placed in one 

of the branches in each direction).  

Voltage and electric current values, which are the output data provided by Ngspice are written 

in text files that are the input information for another software chosen for the calculation of the 

sought variables. In this way, and applying functions that already exist in the selected software, 

the solutions are presented as numerical information (for example, groundwater flow) and as 

graphical information (for instance, flow nets).  

To generate the input file for Ngspice and read its output files, a tool is programmed employing 

Matlab. This tool, where geometrical and hydrogeological parameters are introduced, builds the 

discretized scenario and, afterwards, the circuits that are introduced in Ngspice. The text file 

written by Matlab includes the commands that are necessary to run Ngspice, as well as those 

that allow deciding which of the variable calculated by this software are exported back to 

Matlab. Using data that Matlab imports from Ngspice, the developed tool allows calculating the 

solutions with previously existing functions (graphical solutions, such as flow net and pore 

pressure distribution) or with functions programmed by the designer to obtain the sought 

numerical solutions.  

In addition, Matlab allows designing interfaces, so the created tools are user-friendly in order to 

help future researchers to employ them without needing to understand the code. These 

interfaces, generated with GUI toolbox in Matlab, can be used for introducing the parameters 

of the problem as well as deciding which of the variables are drawn or calculated.  

As regards the discriminated dimensional characterization of scenarios of flow through porous 

media, other important issue of research in this thesis, the methodology appears by the 

conjunction of the nondimensionalization of the governing equations which rule the problem 
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and the study of the list of relevant parameters, both methods approached by applying spatial 

and general discrimination techniques.  

On the one hand, the variables involved in the governing equations are turned into 

dimensionless using parameters from the list, so the equations are also dimensionless once the 

dimensionless variables are introduced in them. The number of monomials that are obtained 

from one of the equations is the same as addends the equation has minus one, since a group is 

formed as the ratio of two of the addends of the equation.  

On the other hand, from the list of relevant parameters, groups can also be obtained as ratio of 

these parameters. These groups are usually employed to relate and consider geometrical 

aspects of the scenarios.  

The unknown variables of the problem must also be turned into dimensionless. Occasionally, 

obtaining the dimensionless expression of an unknown is simply done by dividing it by one of 

the parameters of the list of relevant parameters. In other cases, the unknowns are turned into 

dimensionless by generating a reference variable with mathematical manipulation of some of 

the reference parameters. 

Once data and unknown monomials have been deduced with the different techniques, they 

must be checked by simulations of scenarios that, despite having different values for the 

dimensional parameters, can be reduced to the same values of the dimensionless groups. If the 

numerically simulated solution patterns are identical for different cases in which, with different 

combinations of the variables that make up the monomials, the value of the monomials is 

maintained, then the monomials have been correctly deduced and the technique has been 

correctly applied. If this does not happen,  an error when choosing the references or when 

considering the discriminated dimensions of the parameters might have occurred.  

When data and unknown monomials have been checked and verified, dimensionless curves and 

abaci can be depicted, relating both sets of groups. To this aim, numerous simulations are run 

so the results cover the higher range of possible scenarios.  

As a last step, when graphically representing dimensionless curves, the importance of the 

monomials they relate must be considered. Following this recommendation, if the 

dimensionless unknown had to be presented in a set of abaci, they would be simple and easy to 

use. In order to depict the abaci shown in this thesis, a big number of simulations have been run. 

Depending on the scenario and variable, the number of simulations goes from 150 to 3000, 

taking each of the simulations from 10 minutes to 6 hours.  
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I.5 Thesis organization 

Chapter II collects the state of art of problems of flow through porous media in general and 

focuses on the scenarios studied in the following chapters. First, a summary of the formulation 

traditionally employed in the study of these problems is presented (Darcy’s law). After showing 

the formulation, which the rest of the thesis is based on, the following section is a summary of 

the discriminated nondimensionalization technique, presenting previous works in which this 

methodology has been successfully applied. The next section is a historical overview about 

electrical analogy as a simulation method in engineering problems, particularly those related 

with flow in porous media. The fourth section of Chapter II explains the bases of the network 

method and its use to model engineering problems in general, and geotechnics problems in 

particular. Finally, the last two sections show the computer tools (Ngspice and Matlab) used for 

the development of this thesis.  

Chapter III is an investigation of the dimensional character of permeability and hydraulic 

conductivity, characteristics that define the soil behaviour in flow scenarios. Firstly, the problem 

is approached with the classical methodology presented in those texts of Muskat [1937] and 

Taylor [1948], and then, the concept of discrimination is applied, so lengths in different 

directions are considered with different units. With this second methodology, although 

incomplete, we get to some conclusions that confirm the dimensionless groups for anisotropic 

media applied in the following chapter of this document.  

Chapter IV shows, for each of the studied scenarios, different aspects of discriminated 

nondimensionalization technique. Those problems are: flow under a gravity dam without a 

sheet pile in its base, flow under a gravity dam with a sheet pile in its base, flow under gravity 

dams in infinite media and pumping well in unconfined aquifers. For each of these scenarios, its 

mathematical model (governing equation and boundary conditions), nondimensionalization of 

the governing equation, deduction of the dimensionless groups and universal curves for 

determining the unknowns of interest are presented. In the case of flow in unconfined aquifers 

due to a pumping well, the last section presents the verification of the groups.  

Network models are described in Chapter V. The text files for these models, written with Matlab, 

are run by free software of circuit simulation, Ngspice. Its solutions are processed back in Matlab 

for displaying them in tables or graphs. For the scenarios of flow under gravity dams with or 

without a sheet pile, 2-D rectangular coordinates are employed, while for those of flow in 

unconfined aquifer, the chosen coordinates are 2-D cylindrical because of its axial symmetry.  
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Based on the results from the previous Chapters (IV and V), Chapter VI presents the inverse 

problem for determining the value of the physical parameters (permeability or hydraulic 

conductivity) for flow to a pumping well in anisotropic unconfined aquifers. The inverse problem 

is approached employing the dimensionless curves shown in Chapter IV and a common protocol 

of successive numerical simulations. For both methodologies, the effect of statistic errors in is 

studied in a shallow way. The errors are applied to the real values of water flow and seepage 

surface, and then the influence on the estimation of the conductivities is calculated.  

Chapter VII illustrates the results of this thesis through examples of application and comments 

about their solutions.  

Contributions and conclusions of the research are summarized in a specific section at the end of 

this document.  
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Chapter II. Theoretical fundamentals 

 

 

 

In this chapter, the first aspect that is introduced is the theoretical basis of the problems of water 

flow in soils. This section includes an approach to Darcy’s law, after which the governing 

equations of the problem and its boundary conditions are presented. The last part of the section 

is a summary of the different problems that are studied throughout this thesis. The second 

section clusters the fundamentals of discriminated dimensional characterization, while the third 

section does the same for the electrical analogy. Section II.4 presents the Network Simulation 

Method (NSM), based on the electrical analogy, as the numerical tool to simulate solutions of 

flow through porous media. This fourth section first presents the concept, followed by the 

electrical devices available for modelling scenarios, and closes with a slight explanation of how 

the NSM is used as a numerical tool. Finally, the fifth and sixth sections briefly present the two 

codes that have been employed to simulate the scenarios, Matlab and Ngspice.  
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II.1  The flow of water in soils  

II.1.1  Darcy´s law 

As for flow of viscous fluids through hollow tubes, the physical principles which determine the 

behaviour of fluid flow through porous media should be deduced from the balance or forces (2nd 

Newton’s law). Nevertheless, the intricate and complex duct network in porous media makes 

this task complex. In this way, when Darcy [1856] became interested in characterizing flow 

through sand filters, he had to resort to experiments. By employing them, he discovered the 

fundamentals of the quantitative law which describes the dynamical behaviour of these flows.  

His experiments led to a simple result (known as Darcy’s law): ‘the amount of water (m3/s) 

flowing through a porous medium is directly proportional to the filter’s cross section, A (m2), and 

the pressure difference between the inlet and the outlet, Δp (N/m2), and inversely proportional 

to the length of the medium, L (m)’. The analytical expression (which was originally stated as Q =

C
୅

୐
(h), where Δh is the piezometric or hydraulic potential difference between the inlet and 

the outlet of the medium) is 

Q = C୭
୅

୐
(p)          (II-1) 

with C0 a dimensional constant whose physical meaning is complex if approaching it from its 

dimensional equation, [C୭] = LMିଵTିଵ, or its units, m·kg-1·s-1. However, its definition is 

immediate for a sample inside an impervious cylindrical container: ‘C0 is the amount of water 

flowing through a cross section of unit area and length, to which a unit pressure difference 

between its bases is applied’. Evidently, C0 is a constant that depends on the physical properties 

of the fluid (viscosity and density) and the geometrical properties of the porous network (grain 

size, porosity, connectivity and tortuosity). The dimensional character of both the law and the 

constant C0, as well as its dependence on the cited properties, is thoroughly presented in 

Chapter III. The first attempts of deriving Darcy’s law from classical hydrodynamical equations 

were those of Muskat [1937] and Bose ([1929] and [1930]), and none of them reached to a 

correct solution. 

The validity of Equation (II-1), due to its fundamental character and the simple relation, has been 

subject of much research in order to verify it, from theoretical attempts based on Pi theorem 

(Muskat [1937]) to myriad of experiments in different types of media under a broad range of 

pressures. The most reliable results conclude that 
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 low average velocities  ୮

ୱ
= aଵv   (equivalent to Darcy’s law) (II-2a) 

‘laminar viscous flux’ 

 higher velocities  ୮

ୱ
= aଵv + aଶv୬   (∆୮

∆ୱ
 increases faster than v) (II-2b) 

‘partially or totally turbulent flux’ 

Case (II-2a) is known as viscous flow, as an analogy to hydrodynamics in hollow ducts. Indeed, 

experimental logarithmical charts developed by Fancher et al. [1933] relating friction factor,  =

(୮)ୢ

ଶ୐୴మ, to Reynolds number, Rୣ =
୴ୢ


 (where d is the average grain size), confirm that for Re<1, 

Rୣ = constant. This is  

୮

୐
 

ୢమ v,  or  ୮

୐
= Cଷv      (II-3) 

where C3 is a dimensional constant that includes parameters related to the fluid and the 

medium. This result is coherent with Darcy’s law. Later in this document (Chapter III), Muskat 

[1937] strongly stated that parameter d has to be the average grain size: ‘Physically, of course, 

the parameter d should represent the average pore rather than the grain diameter. However, as 

the former can be directly measured only by microscopic examination of the cross section of the 

porous medium itself, all attends to define or use a value of d to enter into the Reynolds number 

have referred to the averages of the actual grains diameter’. 

This law lacks validity when the flow becomes partially or completely turbulent, having to apply 

in these scenarios expression (II-2b) with a value of n around 2, according to all the experimental 

results in different kinds of media. The strongest example that corroborates expression (II-2b) is 

that from Lindquist’s experiment [1933], who studied water flow through uniform-size bullet 

columns where n=2. The chart where his results were collected, presenting Rୣ vs Rୣ, displays 

two lines, one horizontal (for 0<Rୣ<4, approximately) followed by the second with constant 

positive slope (for Rୣ>4, approximately) which adjust to line equation Rୣ = C4+ C5Rୣ, where C4 

and C5 are dimensional constants, as Rୣ =
ଵ

ଶ

(୮)

୐
ቀ

ୢమ


ቁ ቀ

ଵ

୴
ቁ. The equation can be written in the 

form ଵ
ଶ

(୮)

୐
ቀ

ୢమ


ቁ ቀ

ଵ

୴
ቁ = Cସ + Cହ

୴ୢ


  or, finally,  

(୮)

୐
= ቀ

ଶେర

ୢమ ቁ v + ቀ2Cହ


ୢ
ቁ vଶ =  C଺v + C଻vଶ        (II-4) 

Equation (II-4) is equivalent to expression (II-2b). Perhaps, capillary and irregular nature of the 

porous media is the reason why the transition from laminar viscous to turbulent regimen is not 

as sharp as in the case of hollow ducts.  

Different experiments (for example those of Lindquist [1933] with homogeneous bullets and 

Ehrenberger [1928] with heterogeneous sands) stablished that the limit of application of Darcy’s 
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law in values of Reynolds number would oscillate between 12 and 1; from these data it can be 

deduced that Re value is reduced as heterogeneity increases due to the wide variations of pore 

size, although neither the shape nor grain angularity nor cementation degree (physical aspects 

that determine porosity, connectivity and tortuosity) are clustered in d expression. 

Nevertheless, we accept Re = 1 as the lower limit to ensure viscous or Darcy’s regimen, where d 

can take any reasonable definition of the average grain size.  

In ground engineering, there are many problems in which the most influent potential agent 

causing pressure difference (and, therefore, water filtration in soil) is gravity. For this reason, 

Darcy’ s law is frequently written in terms of hydraulic gradient, ௗ୦

ௗ୶
. The relation between the 

changes in pressure (p) and variation of fluid head or fluid hydraulic potential (h), for the same 

geometric vertical position z (height from a specific reference), is: 

𝑑p = g(𝑑h)           (II-5) 

where gh is the energy per unit of fluid volume due to the weight of a fluid column of density, 

ρ, and height, h. The column would communicate this point to the atmosphere. gh is this same 

energy per unit of mass, and h the energy per unit of weight. According to Bernoulli’s equation, 

neglecting velocity loads, variables h and p are related by  

h =
୮

୥
z           (II-6) 

where ± sign depends on the sense in which z grows, + if the variable grows upwards and – if 

the variable grows downwards.  

The variable dp presents the work of the pressure forces per unit of volume (with negative sign), 

when the pressure is caused by gravitational forces or potentials. This work modifies the 

gravitational potential energy of the fluid in the same value (the potential energy decreases if 

the work is positive, dp<0, and increases when the work is positive, dp>0). Employing this 

hypothesis, Darcy’s law can be written as  

v =
୩୥


ቀ

ୢ୦

ୢ୶
ቁ =

୩ ౜


ቀ

ୢ୦

ୢ୶
ቁ = κ

ୢ୦

ୢ୶
         (II-7) 

where  

κ = ୩୥


            (II-8) 

This new parameter κ is known as hydraulic conductivity, and it depends on the porous media 

and the fluid. The other parameter, k, is known as permeability, and only clusters physical 

properties of the media. Since the hydraulic gradient has null dimension (which lacks physical 
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meaning), κ (m/s) has that of a velocity, [κ] =LT-1, leading to a certain degree of confusion. 

Hydraulic conductivity does not present the same nature as velocity, which is kinematic physical 

quantity. However, it is commonly measured in Darcy (1 cm/s= 1040 darcys, so it is a velocity 

unit). Finally, k (m2) has the same units of a surface, [k]=L2.  

All in all, Darcy’s law defines the macroscopic behaviour of a fluid that flows through a porous 

medium, relating concepts involved in dynamics. Macroscopically, it means that the fluid volume 

elements to which it refers have many pores, so velocity and pressure variables are averaged 

values in these pores. Local values of the variables (in each pore) can vary sharply and, in order 

to know this information, Navier-Stokes equation must be solved. Therefore, Darcy’s law can be 

considered as the statistical result of averaging the results of Navier-Strokes solution in a big 

number of individual pores, being this the reason of its importance.  

Although Darcy’s experiments were carried out in 1-D scenario, the translation to 3-D scenarios 

is immediate. In rectangular cartesian coordinates 

v୶ =  −
୩౮


ப୮

ப୶
           (II-9a) 

v୷ =  −
୩౯


ப୮

ப୷
           (II-9b) 

v୸ =  −
୩౰


ப୮

ப୸
           (II-9c) 

where  is the dynamic viscosity of the fluid and k the permeability, that can vary from one point 

to another as well as in each spatial direction in the same point. In isotropic soils, kx=ky=kz=k, so  

v୶ =  −
୩


ப୮

ப୶
 ,  v୷ =  −

୩


ப୮

ப୷
,  v୸ =  −

୩


ப୮

ப୸
       (II-10) 

As external forces exist (gravitational forces, for example), this must be added to the pressure 

gradient as forces per unit of volume. Darcy’s law has then the following form 

v୶ =  −
୩౮


ቀ

ப୮

ப୶
− Fୣ୶୲,୶ቁ         (II-11a) 

v୷ =  −
୩౯


ቀ

ப୮

ப୷
− Fୣ୶୲,୷ቁ        (II-11b) 

v୸ =  −
୩౰


ቀ

ப୮

ப୸
− Fୣ୶୲,୸ቁ         (II-11c) 

If external forces are conservative (as happens to gravitational), there is an associated potential 

energy from which they derive as  

Fୣ୶୲,୶ =
ப୚౛౮౪

ப୶
i +

ப୚౛౮౪

ப୷
j + ப୚౛౮౪

ப୩
k = −∇Vୣ ୶୲       (II-12) 
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Therefore, the previous Darcy’s law expression is written as 

v୶ =  −
୩౮


ቀ

ப୮

ப୶
+

ப୚౛౮౪

ப୶
ቁ = −

୩౮


ቂ

ப

ப୶
(p + Vୣ୶୲)ቃ       (II-13a) 

v୷ =  −
୩౯


ቀ

ப୮

ப୷
+

ப୚౛౮౪

ப୷
ቁ = −

୩౯


ቂ

ப

ப୷
(p + Vୣ୶୲)ቃ      (II-13b) 

v୸ =  −
୩౰


ቀ

ப୮

ப୸
+

ப୚౛౮౪

ப୷
ቁ = −

୩౰


ቂ

ப

ப୸
(p + Vୣ୶୲)ቃ      (II-13c) 

If the medium is now assumed to be homogeneous (k and  independent of position) and 

isotropic (independent of spatial direction), a new potential function is defined (although, as 

show later, it does not have meaning of energy per unit of volume) in the form 

 =
୩


(p + Vୣ୶୲)          (II-14) 

The new variable  can be given the meaning of a velocity potential, a potential function from 

which velocity is derived in the same way as conservative forces are derived from its associated 

potential function,  

v୶ =  −
ப
ப୶

,  v୷ =  −
ப
ப୷

,  v୸ =  −
ப
ப୸

      (II-15) 

or 

v =  −∇ =  −∇ ቂ
୩


(p + Vୣ୶୲)ቃ         (II-16) 

It is important to keep k and  as separated parameters in Equation (II-14) instead of defining a 

new parameter with the ratio of both, even if it is only to separate the fluid properties (μ) and 

the soil characteristics (k). Expressions (II-16), together with the definition of  (II-14) can be 

considered as the generalization of Darcy’s law, the dynamic equation that substitutes Navier-

Stokes equation as its equivalent macroscopic expression for homogeneous isotropic fluids and 

soils.  

The physical meaning of quantities involved in Darcy’s law can be written as: 

p (pressure, N/m2 o P)  force per unit of surface or energy associated to pressure (pressure 

energy) per unit of volume. Assuming p as energy per unit of volume 

gives this variable the meaning of an energetic potential from which 

pressure forces per unit of volume are derived. 

𝛁p (N/m3 o P/m)  force per unit of volume or spatial variation of pressure energy per 

unit of volume 

𝐅ୣ୶୲,୶    force per unit of volume or spatial variation of the potential energy 

Vex per unit of volume  

Vୣ ୶୲                potential energy (associated to force 𝐅 ୶୲,୶ per unit of volume 
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p + Vୣ୶୲    total potential energy per unit of volume (associate to external force)  

𝛁(p + Vୣ ୶୲)     total force per unit of volume associate to the spatial changes of the 

pressure energies and potential energy   

 =
୩


(p + Vୣ ୶୲)  (isotropic media)  velocity potential (its gradient determines the v components)   

 

II.1.2  Governing equations 

The governing equation in terms of the potential variable, h or , assuming an incompressible 

fluid and steady flow, is obtained by substituting expressions (II-13) in the continuity equation 

(or fluid mass conservation) 

ப୴౮

ப୶
+

ப୴౯

ப୷
+

ப୴౰

ப୸
= 0          (II-17) 

which result is  

κ୶
பమ୦

ப୶మ + κ୷
பమ୦

ப୷మ + κ୸
பమ୦

ப୸మ = 0        (II-18) 

In isotropic soils, it can be reduced to డ
మ୦

డ୶మ +
డమ୦

డ୷మ +
డమ୦

డ୸మ = 0  

or ଶh = 0, where 2 is the Laplace mathematical operator, ଶ =  
డమ

డ୶మ +
డమ

డ୷మ +
డమ

డ୸మ. In terms of 

velocity potential, it is easy to deduce the governing equation 

ଶ =  
డమ

డ୶మ +
డమ

డ୷మ +
డమ

డ୸మ = 0        (II-19) 

In bidimensional irrotational flow, in isotropic soils of any geometry, where the flow is the same 

in parallel planes (as it occurs in most ground engineering problems), the governing equation is 

ଶ =  
డమ

డ୶మ +
డమ

డ୷మ = 0, where v୶ =  −
డ

డ୶
 and v୷ =  −

డ

డ୷
. Among the harmonic functions (solutions 

of Laplace-type expressions) there is a solution, , known as the conjugated function of , that 

is defined as 

v୶ =  
ப

ப୷
 and v୷ =  −

ப

ப୶
          (II-20) 

Substituting this definition in continuity equation two different solutions are obtained: on the 

one hand, Cauchy-Riemann condition, డమ

డ୶డ୷
−

డమ

డ୷డ୶
= 0; on the other hand, employing the velocity 

expression and the relation between  and  (− 𝜕

𝜕x
=

𝜕

𝜕y
, and −

డ

డ୷
= −

డ

డ୶
), the conjugated 

function  (stream function) that also meets Laplace expression.  

ଶ =  
பమ

ப୶మ +
பమ

ப୷మ = 0          (II-21) 
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In steady state, any point of a particle path meets ௩೤

௩ೣ
=

ௗ୷

ௗ୶
 , or v୷𝑑x = v୶𝑑y. Introducing velocity 

expressions (II-21) in this equation, we obtain డ
డ୶

𝑑x +  
డ

డ୷
𝑑y = 0, so 𝑑 = 0. This means that in a 

streamline, = constant. Another property of  is that water flow per unit of length in the z 

direction (q m2/s) between two lines is always the difference between the value of  of both 

lines. Indeed,  

q = ∫ v୶
మ

భ
dy = ∫ dమ

భ
= ଶ − ଵ        (II-22) 

The set of graphics =constant and = constant, are perpendicular between them, so ones can 

be easily obtained if the others are known. Their graphical solution is the flow net, a very useful 

tool in problems involving groundwater flow. Analytically, the relation between both harmonic 

functions can be easily found 

 = ∫ ቀ
∂

∂x
𝑑y −  

∂

∂y
𝑑xቁ,      = ∫ ቀ

∂

∂y
𝑑x −  

∂

∂x
𝑑yቁ     (II-23) 

The combination of  and  in the form  =  + i (complex potential) has an especial interest, 

since ଶ = ଶ + iଶ meets the continuity equation and the governing equations ଶ = 0 

and ଶ = 0. In this way, the flow is continuous and irrotational.  

The main disadvantage of employing the variable  instead of h is that the information about 

the anisotropy of the soil is lost, because the isotropic permeability or hydraulic conductivity is 

involved. Therefore, in order to obtain more realistic flow nets, it is a better option to introduce 

the hydraulic potential (or water head) variable, h. For this purpose, variables h and  are related 

by 

v୶ = −κ୶
ப୦

ப୶
=

பஏ

ப୷
      v୷ = −κ୷

ப୦

ப୷
= −

பஏ

ப୶
      (II-24) 

With this formulation, similar conclusions to those obtained for isotropic soils are reached but, 

in this last case, isopotential lines and streamlines do not have to be necessary perpendicular to 

each other. In order to plot the stream function variable, two different approaches can be used. 

On the one hand, the variable can be solved by itself, considering its own boundary conditions. 

On the other hand, it can be solved from the results of the hydraulic potential by numerical 

integration. For this second option, Equation (II-24) must be translated into spatial derivatives 

v୶ = −κ୶
∆୦

∆୶
=

∆ஏ

∆୷
      v୷ = −κ୷

∆୦

∆୷
= −

∆ஏ

∆୶
      (II-25) 

According to this, the stream function variable can be integrated following two different paths 

Ψ୧,୨ − Ψ୧,୨ିଵ = −κ୶
∆୦ ∆୷

∆୶
     or    Ψ୧,୨ − Ψ୧ିଵ,୨ = −κ୷

∆୦ ∆୶

∆୷
        (II-26) 
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Both expressions derive in the same solution of the stream function, and for the development 

of the calculations presented later in this work, the first option is employed This has an 

advantage, since only one boundary or initial condition must be known.  

 

II.1.3  Boundary conditions  

They complete the mathematical model and are classified as: 

 First class or Dirichlet. This is the most common one and imposes a constant value of the 

dependent variable at the border. Since the governing equation can be stablished in terms 

of any of the potential variables, hydraulic potential (h) or stream function (), this condition 

can be set in both models. For variable h, the flow in the border adjusts along it to be 

coherent with the imposed potential, while for variable  (which implies an impervious 

border) is the piezometric potential the one that adjusts along the border to be coherent 

with the constant value of . Their expressions are  

h = constant  (1st class in h)   isopotential border  

 = constant (1st class in )  impervious border 

Moreover, in the border with isopotential lines, the hydraulic gradient along the line (డ୦

డୱ
) is 

null, which means that the component of the velocity is perpendicular to the border line or 

surface. In the same way, at border lines with constant value of , the gradient of  along 

the line (డ
డୱ

) is also null, so the velocity in the perpendicular direction to this line (proportional 

to డ
డୱ

) is null. This all is independent of the isotropic or anisotropic character of the medium.  

First class condition can also be applied to the mathematical model with the velocity 

potential variable,  =
୩


(pgz) = gh. Its expression is  = constant and has the same 

physical meaning as h=constant, since ρ and g are constant.  

 Second class of Neumann. For the potential variable it defines a constant inlet or outlet water 

flow through a border (perpendicular to the studied contour). Its equation is  

డ୦

డ୬
 = constant (2nd class in h) 

If డ୦

డ୬
= 0, it is a homogeneous second-class condition and defines an impervious border in 

terms of h. In both cases, the potential h in the border must adjust to meet this condition. 

For variable , second class condition is written as  

డ
డ୬

 = constant  (2nd class in) 
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This means that the water flow is constant in the direction of the border (eventually null if it 

is a homogeneous condition, డ
డ୬

= 0). In both cases,  automatically adjusts to meet the 

condition.  

 Free surface. It is a special condition without analogy in problems of flow of other nature. It 

is related to the streamlines located in those borders that generally are not defined a priori 

in the problem (if no capillary flow is considered). Those streamlines have constant pressure 

(p), usually atmospheric. Therefore, in this border there is no flow perpendicular to it. It is 

expressed in terms of two equations that must be simultaneously met  

p = constant and డ୦

డୱ
 = constant    (free surface condition) 

డ୦

డୱ
= constant means that h for the same values of s along the free surface are the same.  

 Seepage surface condition. It is a special condition that is related to constant pressure lines 

that emerge in wells, ditches, vertical walls and earth dams, and can be vertical or horizontal. 

They are not streamlines, since there is a flow component perpendicular to these lines. They 

are defined surfaces which present one unknown limit. This limit is considered as a problem 

unknown, although it is located in the same place as one of the limits of the free surface. It 

can be expressed as 

p = constant       

It is a known border except for one limit (free surface condition)  

Free and seepage conditions make the design of analogical models based on the network 

method very complex due to the lack of definition of these borders. Their resolution is 

cumbersome and can be considered as inverse problems, for which new data must be 

introduced. For example, determining these lines in a well could be obtained by successive 

approximations if the pumping rate is given. Lines move successively for each solution until the 

final water flow is reached. The introduction of specific electrical devices in the model, as 

presented in Chapter V, or other input information (such as piezometry in a point of the free 

surface, experimentally measured) can also lead to the solution of the problem.  
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II.1.4  Scenarios of dams and wells  

Along this thesis, two different problems of flow through porous media are studied: ground 

water flow under impervious dams, and water flow in unconfined aquifers due to a pumping 

well. Although both phenomena occur due to a difference of hydraulic potential, for each of 

them, the employed coordinate system differs. Flow under dams is modelled in rectangular 2-D 

coordinates (x, y), while in pumping well scenarios, the flow is simulated with 2-D cylindrical 

coordinates (r, z) because the problem can be simplified as axisymmetric. Dam scenarios can 

present some differences among them: the structure may have a foundation or not, and it can 

present a sheep pile under it, located in different points at its base. All these options (Figure 2.1) 

alter the values of the studied variables. In problems of flow in unconfined aquifers due to 

pumping wells (Figure 2.2), two specific variables appear: free surface, which is the area of the 

saturated soil under atmospheric pressure, and seepage surface, which is the area above the 

well where the water head values are the same as the vertical position and there is flow outside 

the aquifer.  

 
Figure 2.1. Different scenarios of flow under dams 
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Figure 2.2. Scenario of flow in unconfined aquifers due to a pumping well 

 

II.1.4.1  Dams with or without foundation 

This kind of problems can be modelled according to the boundary conditions and the parameters 

shown in Figure 2.3. As anisotropic soils, two hydraulic conductivities are considered, one for 

each direction that is considered, κx and κy.  

 
Figure 2.3. Parameters and boundary conditions of flow under dams 

The governing equation for these problems is a Laplace-type expression that has been previously 

shown in this section.  
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κ୶
பమ୦

ப୶మ + κ୷
பమ୦

ப୷మ = 0          (II-27) 

In these problems, to the horizonal upstream and downstream contours are applied constant 

values of hydraulic potential, while the rest of the contours are considered as impervious. The 

vertical external contours, which represent the connections with the river, can be modelled with 

other conditions, h=h1 and h=h2 for the left and right borders respectively, as in other research 

papers (Mateo-Lázaro et al. [2016]). However, this option is not employed in this thesis.  

If a dam without a foundation is considered, d=0, so the vertical boundary conditions which 

modelled this part of the structure disappear.  

 

II.1.4.2  Dams with sheet pile 

In this case, the parameters and boundary conditions are similar to those of the previous 

scenarios, and then the ones related to the length and position of the sheet pile are added. All 

this is displayed in Figure 2.4.  

 
Figure 2.4. Parameters and boundary conditions of flow under dams with sheet pile 

The governing equation in these scenarios is the same as in II.1.4.1, because the existence of the 

sheet pile does not alter the expression. Nevertheless, it affects the boundary conditions, as it 

adds two vertical and one horizontal impervious contour.  

Although the sheet pile width is considered as negligible for this research, when modelling it a 

small value must be given. This means that this width must be represented as a horizontal 
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impervious border, so it becomes a boundary condition too. If a dam without a foundation is 

considered, d=0, so the vertical boundary conditions which modelled this part of the structure 

disappear.  

 

II.1.4.3  Pumping wells in unconfined aquifers 

Among the various fields of hydrogeology and ground engineering, water flow through porous 

media due to the presence of a pumping well has been widely reviewed in several publications 

and manuals (Barlow & Leake [2012], Ayvaz & Karahan [2008]). Not only water supply (Massuel 

et al. [2017]), but also oil and gas production (Davies et al. [2014]) as well as investigation about 

pollution (Bakis & Tuncan [2011]), are topics related to this research area. Nevertheless, these 

issues involve other elements, such as solutes or other fluids, which increases the difficulty of 

its study.  

As in any other processes of water flowing through soil particles, when studied from a 

macroscopic point of view, it is based on Darcy’s law. Moreover, specific formulation based on 

Darcy’s law to characterize the flow due to pumping wells have been developed. These 

expressions, which involve geometrical and hydrogeological parameters, allow achieving results 

in a rather simple manner. The expressions and procedures to reach results vary according to 

the nature of the aquifers. According to the water level position, aquifers can be considered 

confined, semiconfined or unconfined. In addition, another way to classify aquifers is 

conforming to time: when the phenomenon is stabilised, then it is known as steady-state or 

stationary, while before this moment it is considered as transient-state.  

Confined aquifers are those whose piezometric level is above the upper border along the whole 

horizontal length that is being considered. When pumping is happening, none of the new values 

of water level generated by the extraction or injection of water can be below the upper border 

of the aquifer. When steady state is studied, Thiem approximate formulation (Thiem [1906]) is 

employed. It states that the volume of pumped water depends on the variation of hydraulic 

potential or drawdown in a linear way. If the problem is studied before the phenomenon has 

stabilised, the problem is time-dependent, and the solutions are affected by this new variable. 

Theis [1935] developed a methodology to study this phenomenon. The equations and graphics 

he presented came from the solution of heat flow from an instant source in a 2-D medium 

(Carslaw [1921]). However, simplifications have been elaborated in order to avoid the use of 

Theis graph, although they are subjected to restrictions. The most-known simplification is that 

of Jacob [1963], which is valid for values of u lower than 0.03, being u an auxiliary function in 
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Theis expression (inherited from the heat flow formulation). It involves some of the variables of 

the scenario, such as the well radius, the storage coefficient, the transmissivity of the aquifer 

(which is the product of the hydraulic conductivity and the aquifer thickness) and the moment 

(time) when the test is being carried out. If the restriction is met, then Jacob formula is very easy 

to use, as its independent variable is time.  

Semiconfined aquifers are a second kind of aquifers, and they are also known as leaky. These 

appear when the aquifer is recharged by an aquitard (layer of lower permeability) that is 

commonly placed above it (although it is also possible to find the aquitard underneath the 

studied aquifer). Therefore, while the aquitard is supposed to keep a constant piezometric level 

(so the hydraulic potential is assumed not to vary in any point of it), it does vary inside the 

aquifer. In the same way that occurs for confined aquifers, semiconfined aquifers are studied in 

a different manner if they are considered to have reached a balance (steady-state) or not 

(transient-state). De Glee [1930] developed his formulation for steady-state semiconfined 

aquifers. He modelled the combination of the aquifer and the aquitard introducing a new 

parameter, leakage factor (B), which clusters information about both structures, as it involves 

the transmissibility of the aquifer, the saturated thickness of the aquitard and its hydraulic 

conductivity. Moreover, an auxiliary variable Ko (in which B takes part) is employed in order to 

reach the solution of the problem. For transient-state semiconfined aquifers Hantush [1964] 

solution is similar to that presented by De Glee, as they both employed the parameter B. 

However, Hantush formulation is also based on the solution provided by Theis although, while 

Theis only presented one curve (W(u)), Hantush developed an abacus where each curve shows 

the function W(u) for different values of B.  

The last type of aquifers are unconfined aquifers, which are also known as water table aquifers. 

They are given this name because the groundwater surface (phreatic level) is below the upper 

border of the permeable stratum, so the water is at atmospheric pressure. Whether steady or 

transient state scenarios are considered, the same restrictions are applied when employing the 

traditional formulations to study the flow due to a pumping well. Firstly, the aquifer is supposed 

to be of infinite extension, homogeneous and isotropic, with horizontal bottom and constant 

thickness. Moreover, the diameter of the pumping well is negligible, and the well is fully 

penetrating. Traditionally, only radial flow is considered, an assumption that is commonly known 

as ‘Dupuit-Forcheimer hypothesis’. The last restriction is to consider only one pumping well in 

the area that works at a constant discharge rate.  

If the steady state has been reached (a hypothesis only valid if pumped groundwater is 

compensated by other recharge source of water), the formulation that has been traditionally 
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employed is that developed by Dupuit [1863]. He stated that the water flow value depends on 

the difference of the squared values of hydraulic potential in two points of the water table. Some 

authors, however, explained that Thiem equation could be applied if the potential difference 

was lower that 10-15 % (González de Vallejo [2002]). If the potential difference is higher, Jacobs 

correction ([1963]) can be employed to work in terms of drawdowns, which is common when 

plotting curves.  

Transient state in unconfined aquifers is difficult to study by traditional protocols. There is not a 

specific theoretical formulation accompanied by curves or abaci to obtain results, and the 

phenomenon must be approached with empirical methodology in which , for example, different 

pumping rates are employed to reach the sought parameters. To study transient state in these 

aquifers following a more traditional method, a graphical method is used, in which the curve is 

divided in three parts and Theis formulation is employed in the first and the last parts. Due to 

the complexity of this methodology, simplifications for long times have been developed 

(Custodio & Llamas [1976]). 

Non-realistic results are obtained if the hypotheses previously presented are considered in 

problems of flow in unconfined aquifers due to pumping wells. Soils are commonly anisotropic, 

so instead of modelling the problem with a single hydraulic conductivity, at least two values (one 

in the radial direction and another in the vertical one, since we still consider the problem as 

axisymmetric) must be employed to simulate the phenomenon in a more realistic way. 

Moreover, only considering radial flow is also a strong restriction which affects the solution, 

since there must be a vertical component in the vicinity of the well whose importance depends 

on the variation of the hydraulic potential due to the pumping. Some authors have modelled 

anisotropic soil by assuming an equivalent isotropic soil (Childs et al. [1957], de Cazenove 

[1961]).  

Not considering the vertical component of the vertical flow in the well surroundings has led to 

lay aside the analytical study of the seepage surfaces, which are the wet surface above the 

position of the water in the well (Castany [1971]). This area, as well as the free surface, is at 

atmospheric pressure. Some authors have presented research defending that the seepage 

surface is the variable that should be introduced in Dupuit formulation instead of the water head 

(or hydraulic potential) in the well (Boulton [1951]). Other investigations carried out empirical 

studied of the seepage surface with scale models (Simpson et al. [2003] and Hall [1955]). With 

these models, mathematical expressions were obtained. The conjunction of electrical analogy 

(Babbitt & Caldwell [1948]) and the finite difference (Stallman [1963]) is a different mean to 

approach a solution for the variable  
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This kind of problems, whose parameters and boundary conditions are displayed in Figure 2.5, 

have less boundary conditions than those in Sections II.1.4.1 and 2, although finding the free 

and seepage surfaces makes the resolution cumbersome because they are not initially known. 

In this case, the conductivities are κr and κz. Furthermore, as explained in Chapter IV, hs is the 

length of the well wall where the hydraulic potential, h, takes a higher value than the vertical 

position, z, including this the well, hw and the seepage surface. Authors, such as Hall, consider 

the variable hs in their research, and the same has been used for this thesis, naming the variable 

‘seepage surface’ in order to simplify the document.  

 
Figure 2.5. Parameters and boundary conditions of flow in unconfined aquifers due to a pumping well 

The governing equation in these problems is also a Laplace-type expression, although in 

cylindrical coordinates, since well models are considered axisymmetric. This is 

κ୰
ଵ

୰

ப

ப୰
ቀr

ப୦

ப୰
ቁ + κ୸

பమ୦

ப୸మ = 0         (II-28) 

In these scenarios, the vertical borders present constant values of hydraulic potential. The 

further border has the initial potential in the aquifer, H, while the one next to the well is divided 

into two kind of values: constant value, hw, along the well length, and the border above it in 

which the constant value varies with the vertical position, h=z.  

 

 



Chapter II. Theoretical fundamentals 
 

42 
 

II.2  Discriminated nondimensionalization. Dimensionless groups and universal 

curves  

Without a thorough explanation, this section presents the concept of ‘dimensional 

characterization’, whose final subject is the setting of the correct and more precise independent 

dimensionless groups that govern the solution of a problem. Its application in this thesis has 

allowed, on the one hand, simplifying classical solutions expressed by their related groups and, 

on the other hand, presenting new universal curves in the fields of groundwater flow applied to 

ground engineering.  

It is known that the reduction of the set of physical and geometrical parameters to the smallest 

number of dimensionless groups that rule a given problem and the deep understanding the 

relative weight of any parameter on the final solution, especially if it is a complex one, is 

generally the first step to simplify the analytical study. With this technique, which requires a 

certain level of knowledge about dimensional theory (or analysis), the use of an efficient and 

reliable protocol to obtain the groups and the application of Pi theorem lead to interesting 

results without much mathematical effort. The solutions of the problem, or its solution patterns, 

depend on the number of dimensionless groups that can be formed with the physical and 

geometrical parameters of the physical phenomenon and the scenario that is developed. The 

complexity of the solutions noticeably increases with the number of groups.  

In this way, for instance, the simplest solutions are obtained when no dimensionless groups can 

be formed with the physical and geometrical parameters involved in the problem. In this case, 

the solution of any global unknown (independent of space and time variables) is obtained 

associating a unity order of magnitude to the single dimensionless group that can be formed 

with the previously mentioned unknown. This group is the dimensionless expression of the 

studied unknown. If it is not a global unknown and, therefore, it is referred to a concrete position 

and/or a certain instant, the dimensionless expression of the unknown is function of the 

normalized position and/or instant dimensionless form, both obtained adopting well-chosen 

references for length and time. If there is a single dimensionless group, global unknowns can be 

displayed with simple universal curves (one for each unknown). These curves are generally 

obtained after a large number of numerical simulations. Non-global unknowns depend again on 

the normalized time and/or position dimensionless variables too. If two dimensionless groups 

emerge from the problem, the solution for each global unknown is an abacus, and if three groups 

appear, a set of abaci. The existence of more than three dimensionless groups increases the 

complexity of the construction of dimensionless curves for global unknown (and even more for 
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local unknown) and it is then convenient to reduce the range of values of these groups to those 

existing in real problems to obtain simple and useful abaci for engineers.  

The compulsory dependence between unknowns, expressed in their dimensionless form, and 

the independent dimensionless groups are set by Pi theorem. This was stated more than one 

century ago by Buckingham [1914] and it is based on the ‘dimensional homogeneity of the 

physical equation’ or the almost evident fact that all the terms of an equation must have the 

same dimension (governing equations are simply balance of fluid, solute, energy, momentum…). 

According to Pi theorem, ‘every physical law may be written in terms of some monomials of zero 

dimensional exponents called the numbers’. Bridgman [1931] was the author who named 

Buckingham’s theorem as Pi theorem, since π was the chosen symbol to make reference to those 

‘numbers’. Pi theorem also implies the invariability of the solution when the measurement units 

of the involved quantities change.  

Currently, the search of dimensionless groups can be carried out employing three different 

procedures: i) dimensional analysis, ii) nondimensionalization of governing equations and iii) 

laboratory experiments. In the first, a list with the relevant physical and geometrical parameters 

and variables is written, and their dimensional equation is deduced by choosing a suitable 

dimensional basis. For its correct application, on the one hand, no variable or parameter 

influencing the solution can be forgotten, in the same way that variables and parameters that 

do not influence the solution should not be included in this list; on the other hand, the 

dimensional basis must be well defined. In this way, from the list of relevant variables and 

parameters and by means of simple mathematical manipulations (clustering two or more of the 

parameters in it), the independent dimensional groups are obtained. The second procedure, 

which is later explained, is the one followed in this thesis since it has proved its efficiency in 

numerous problems. The third procedure, more laborious and expensive, is only a resource 

when the governing equations or the essential physical phenomena involved in the problem are 

not known.  

Going back to Pi theorem, its statement stablished that the solution (or pattern of solutions) of 

any mathematical or physical problem can be written as  

π୧ = f(πଵ, πଶ, … , π୬)          (II-29a) 

where πi is the dimensionless group that can be formed with the global unknown i, f an arbitrary 

(unknown) mathematical function and π1, π2, …, πn are the independent dimensionless groups 

or ‘numbers’ which involve the parameters of the problem. For a local and/or instantaneous 

unknown, Equation (II-29a) is written as 
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π୨ = f(πଵ, πଶ, … , π୬, xᇱ, tᇱ)         (II-29b) 

where πj is the dimensionless group formed with the unknown j, and x’ and t’ are the normalized 

dimensionless position and time variables.  

In his work, Buckingham, apart from a demonstration of the theorem, presented its application 

to a group of selected problem which can be classified as ‘physical’ (not ‘engineering’) problems. 

Previously, Fourier [1822] had referred (for the first time) to the dimension of a physical 

quantity, a nearly philosophical concept which the dimensional theory is based on and which is 

tightly related to the theorem.  

When several parameters are involved in a dimensional group or monomial, the solution or 

patterns of solution do not vary for the same numerical value of this group, no matter the change 

done in two or more of the parameters included in the group. With this advantage, the 

theoretical and experimental researches could work with the dimensionless groups instead of 

the individual parameters of the problem, saving a large number of experiments, simulations 

and, therefore, saving time.  

However, to which point is this theorem useful as an investigation tool in engineering? How are 

the groups obtained? And how do we ensure that the number of groups is the minimum? This 

last question is not trivial, since there are many examples in which the deduced dimensionless 

groups employing a classical dimensional basis- length (L), mass (M) and time (T), noted as 

{L,M,T} – do not behave as independent groups. A representative example that has been pointed 

out by many authors, including Muskat [1937], is Reynolds number, Re. What is wrong? Why 

does this number behave as independent in some problems (for example, transversal flows 

through cylindrical pipes), but not in others (for instance, flow along a flat)? In short, which are 

the limitations or restrictions of Pi theorem? 

Undoubtedly, these limitations are associated to the correct election or deduction of the 

dimensionless groups, for which the simple dimensional analysis theory that has been followed 

or applied in most texts and problems is not enough. One thing is accepting the veracity of Pi 

theorem (a non-discussible question in the scientific community), and another very different is 

applying it when the involved dimensionless groups have not been correctly deduced. 

Therefore, it seems that the determining factor for the correct election of groups in a problem 

is a reliable protocol for its deduction. This protocol, when following simple rules of classical 

dimensional analysis, usually fails, particularly if non-trivial problems are studied.  

Reducing parameters to dimensionless groups, as well as individual unknowns to their 

dimensionless expressions, is a step that appears in almost every scientific text about any field, 
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although there are some exceptions. In this way, Kreith & Bohn [1993] stated: “The most serious 

limitation of dimensional analysis is that it gives no information about the nature of the 

phenomenon. In fact, to apply dimensional analysis, it is necessary to know beforehand what 

variables influence the phenomenon and the success or failure of the method depending on the 

proper selection of these variables’. Bejan [1995] went beyond and suggested that it was a 

useless technique. Indeed, this author developed his own technique, called scale analysis (a kind 

of spatial discrimination of the coordinates), to obtain accurate dimensionless groups and give 

new physical meaning to many of the classical groups (for example, Reynolds and Nusselt 

numbers). In his advance text about flow in porous media, Nield & Bejan [2006] did not allude 

to dimensional analysis, although Bejan dedicated an extensive chapter to this topic in a former 

text about heat transfer (Bejan & Krauss [2003]).  

Dimensional analysis evolution (and, somehow, Pi theorem) has been slow, and no interesting 

results (in complex problems) have been obtained from a theoretical point of view until recently. 

Nevertheless, its limitations have been occasionally pointed out by some authors during the 

twentieth century. In this way, the efforts have been orientated to how the theory should be 

improved (Palacios [1964], Herranz & Arenas [2005], Sonin [1992], Szirtes [2007], Gibbings 

[2011] and Alhama & Madrid [2012]). In any case, there are still some fundamental questions 

many engineers wonder and that we can synthetize as follows: 

 How can dimensionless groups be obtained in an accurate way: starting from the 

governing equation, from the list of relevant variables or by any other way? 

 How can these groups be interpreted, referring to their physical meaning? 

 What is their order of magnitude? What is the order of magnitude of the unknown 

functions set by Pi theorem? 

 What is the role of individual parameters of null dimension (porosity, tortuosity, …)? Are 

these parameters independent dimensionless groups? 

 How should non-lineal problems be treated? 

 What is the criterion to choose the references to obtain dimensionless variables 

involved in the dimensionless form of the governing equations? 

 What are the hidden quantities and how are they justified? 

 How are standardized or normalized dimensionless equations obtained? 

 How can we stablish the quantities of a dimensional basis? 

 … 
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Without a doubt, these are interesting questions for the scientific community and this field is 

only started. Alhama & Madrid [2012] carried out a review of the historical evolution of 

dimensional analysis, its connection with the technique to obtain dimensionless groups and, 

principally, the concept of spatial and general discrimination. In their book, they present a large 

number of classical (non-trivial) problems of heat transmission and fluid dynamics in which they 

criticize many of the classical dimensionless groups which are generally accepted as so in 

engineering (Reynolds, Nusselt, Peclet, …), and they substituted by new ones (Madrid & Alhama 

[2005], [2006], [2008], and Alhama & Madrid [2007]). This leads to collect the previous questions 

in a unique, closed and coherent investigation line.  

The advance in the research of these topics has appeared with the progressive and more general 

introduction of the concept of ‘discrimination’. The history of its development can be read in 

Alhama & Madrid [2012]. It can be said that the first hints of discrimination are ascribed to 

Williams [1892], while deeper understanding was developed by Huntley [1952], Runge [1952], 

Palacios [1955, 1964], Arenas [1970], Herranz & Arenas [2005], Szirtes [2007], Prieto et al. 

[1994], Potter & Wiggert [1997], Martynenko & Khramtsov [2005], and Madrid & Alhama [2005, 

2008].  

The first important step in the theory of dimensional analysis is said to be given by Palacios 

[1964] with the introduction of the so called spatial discrimination, a tool that was later applied 

by Herranz & Arenas [2005], Alhama & Madrid [2012], Seco-Nicolás et al. [2018], Zimparov & 

Petkov [2009], Capobianchi & Aziz [2012], García-Ros et al. [2019 a], Manteca et al. [2014], 

Cánovas et al. [2016] and Sanchez-Perez & Alhama [2020]. Palacios and the other mentioned 

authors conveniently increased the dimensions of the basis with as many lengths as spatial 

directions the physical scenario has, solving a good number of coupled and complex engineering 

problems in the field of fluid dynamics with heat transfer or solute transport. For Palacios, vector 

quantities had different dimensional equations coherently with the spatial direction to which 

they refer.  

Classical nondimensionalization technique states that any length has the same dimensional 

equation, whether they are vertical or horizontal. Moreover, velocities also present the same 

dimensional equation, being irrelevant their spatial direction. Generally, vector quantities are 

studied as scalar. This approach changes with the spatial discrimination, which gives the 

dimension [Lx] for those lengths in the x direction and [Ly] for those in the y direction. This means 

that dimensionless monomials cannot be obtained from the ratio of a horizontal and a vertical 

length. Something similar occurs with velocities, for which vx = [Lx]·[T]-1 and vy = [Ly]·[T]-1, as well 

as other quantities in which lengths are involved.  
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However, Palacios and the rest of the authors previously mentioned started from the same list 

of relevant variables and parameters of the problem (without considering the governing 

equations) and, after giving dimensions to all these, the dimensionless groups were obtained in 

a direct way. This technique, although correct, had severe drawbacks. For instance, 

dimensionless parameters such as porosity, angle and many others must be considered as 

independent dimensionless groups. This immediately increases in an unnecessary way the total 

number of groups to the point of making its application unworkable and useless. Another 

drawback is the difficulty of giving a physical meaning or order of magnitude to the groups.  

Recently, following the spatial discrimination technique some authors have deduced the groups 

from the governing equations conveniently expressed in a dimensionless form (Cánovas et al. 

[2016], Manteca Jr et al. [2012], Manteca et al [2014] for problems of flow and transport in 

porous media, Madrid & Alhama [2008] for heat transfer, Conesa et al. [2016] for application in 

mechanical problems, and Manteca et al. [2018] and García-Ros et al. [2019 a] for non-lineal soil 

consolidation). This change in the protocol for obtaining the groups deletes the drawbacks 

previously mentioned and spatial discriminations is firmly stablished.  

Nevertheless, apart from spatial discrimination, there is another discrimination that can be 

called ‘general discrimination’ that tries to approach other dares. How can we consider two 

quantities of different nature with the same dimensional equation (for example velocity and 

hydraulic conductivity)? Is it possible to assign to the variable angle its own dimension to 

dimensionally distinguish between angular velocity and frequency (or time)? Can we set the 

same quantity twice in a dimensional basis to approach, for example, problems with more than 

one vibration frequency? Is it possible to choose (for the dimensional basis) two lengths in the 

same direction, in order to differentiate two physical phenomena happening in a same direction 

(simultaneous heat and mass diffusion, with different diffusion coefficients)? Can we give 

different dimensions to the different forms of energy (mechanic and thermic, for example) in 

the same problem? These and other questions are answered by general discrimination, and an 

interesting example of its use is presented in Chapter III, where the dimensions of permeability 

and hydraulic conductivity are discussed. Some problems of general discrimination are studied 

in texts from Herranz & Arenas [2005] and Alhama & Madrid [2012], as well as other publications 

(Sanchez-Perez et al. [2020], Conesa et al. [2016]). 

To sum up, we can state that the most accurate technique to obtain dimensionless groups is the 

one derived from the nondimensionalization of the governing equations, which involves a 

correct definition of the dimensionless variables together with the election of the most general 
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dimensional basis. In this thesis, discrimination is presented, but for each problem it is explained 

and justified. This has allowed studying anisotropic media as follows: 

 establishing new groups and removing some of the classical ones 

 choosing correct references for the problem variables 

 introducing the concept of hidden quantities and determining their order of magnitude 

 obtaining universal results among the new groups that can be displayed with an abacus 

or a group of abaci 

 determining these universal solutions, parameters of the problems by simple 

experiments as an inverse problem  

To finish this section, we present a summary of the formal steps that, after applying the process 

of discriminated nondimensionalization to the governing equation, lead to obtain the 

independent dimensionless groups that control the solutions of any unknown in the seepage 

problems studied in this thesis: 

Step 1 → Choosing the references for the dependent and independent dimensionless variables 

involved in the problem.  

 According to spatial discrimination, these references are different for each direction in 

the problem if there is anisotropy and must be chosen (if possible) so the 

dimensionless variable is normalized, this is, its range of values is [0,1]. When no 

reference quantities can be found, these reference values are ‘hidden’ (unknown) 

quantities, and we proceed as if these were given as data. The monomials in which 

these unknowns are involved are treated as the dimensionless expression of such 

unknowns and depend, therefore and according to Pi theorem, on the rest of 

monomials without unknowns.  

Step 2 → Introducing the dimensionless variables (through their definiƟon) in the governing 

equations to obtain the governing equations in their dimensionless form.  

 If the derivatives of the dependent variables are considered as unity, which is justified 

by the normalization of these variables and by the fact that there are not strong non- 

linearities (acceptable in seepage problems), we can obtain the dimensional 

coefficients or factors that multiply the previous derivative terms.  

Step 3 → Obtaining monomials by making raƟos with independent pairs of dimensional 

coefficients from Step 2.  
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 There are groups with unknowns and groups without them. The number of groups is 

(as much) the terms in the governing equation minus one.  

Step 4 → Adding the rest of the groups derived from the boundary condiƟons or the geometry 

of the problem (employing spatial discrimination).  

Step 5 →i) SoluƟon for global unknowns contained in the groups from step 3. Their 

dimensionless form is function of the groups without unknowns.  

 ii) Solution of the other global unknowns (independent of position and time). Their 

dimensionless form (which must be determined) is also function of the groups without 

unknowns.  

 iii) Solution of the unknowns that depend on position and/or time. Their dimensionless 

form, which must also be determined, is function of the groups without unknowns as 

well as the dimensionless position and/or time.  

 

II.3  The electrical analogy. Background and current development  

Physical and engineering processes that are ruled by Laplace-type governing equations, which 

are the result of combing a linear constutive law (Darcy’s, Ohm’s, Hooke’s or Fourier’s) and a 

conservation equation, are easily studied by analogous models. Particularly, electrical models 

can be employed, due to its easy physical implementation and its direct and reliable lecture of 

the simulated results. Examples of these processes are heat conduction, electrostatics, normal 

displacements in elastic membranes, flexion and torsion in elasticity under certain conditions, 

groundwater flow, consolidation and electrical current in conductor media. Since the governing 

equation of steady-state flow of fluids in porous media is also a Laplace-type, both the method 

of handling and the own solutions may be taken over from those that have already been derived 

in the other branches, by simply translating them into their proper hydrodynamic equivalents. 

Electric analogy has some advantages if comparing it to other analogies: 

 devices and components to reproduce the physical properties of the material are available; 

 any kind of geometry can be implemented (rectangular, radial, cylindrical and spherical), 

including irregular scenarios; 

 common boundary conditions (first and second class) have an immediate implementation 

employing direct and simple electrical devices (resistors, batteries, capacitors); 

 reliable measure equipments to easily read the results are available; 



Chapter II. Theoretical fundamentals 
 

50 
 

 in 2-D problems, electrical models present the advantage of providing both equipotential and 

streamlines by modelling conjugated scenarios where the potential borders are exchange 

with streamline borders and vice versa; another manner of obtaining streamline from 

equipotential values is numerical integration. 

Undoubtedly, these advantages are the reason why this methodology has been widely used 

during the last century. According to Scott [1963]: ‘The thermal analogy has not been used in 

practice mainly due to the difficulties of simulating the boundary conditions so that their use 

instructional functions. The same occurs with magnetic and membrane analogies whose 

development has rarely taken beyond an illustrative level. Conversely, electrical models, both on 

continuous and lumped-parameter versions, were spread used because of its convenience and 

availability and the easy and rapidity with which solutions can be obtained’. In addition, electrical 

models have been used in merely mathematical problems (Bradfield et al. [1937]). 

The first models based on the electric analogy are referred to steady-state problems and 

appeared in the second decade of the previous century; these were 2-D continuous models 

carried out in sheets of conductor paper, cut to reproduce the domain contours. Boundary 

conditions are applied in the contours employing batteries (first class condition) or resistors of 

infinite resistance value (second class). The measures of the potential variable (electrical 

voltage) allowed reproducing the patterns of this quantity while those of the flow and other 

variables were calculated in an indirect manner. An essential requirement for the reliability of 

these models is the equivalence, which is commonly referred as similarity between models. This 

equivalence is formulated from the well-defined dimensionless groups that rule the problem. 

Among the first investigations about general electric analogy, we can cite those of Pavlovsky 

[1933], Wyckoff & Reed [1935], Moore [1936], Paschkis & Baker [1942], Paschkis & Heisler 

[1946], and Kayan [1945]. Later, around 1930s, lumped-models were developed, which were 

initially physical model built from discrete element whose value was associated to the cell 

geometry and the physical properties of the medium. The values of the devices were obtained 

comparing the spatially discretized governing equation of the mathematical model to those of 

the electrical model. This technique allowed the implementation of very cumbersome problems 

(non-linear, transitory or complex boundary conditions) by connecting thousands of electrical 

devices. Bonilla [1965] employed this kind of models to study problems of heat transfer in 

nuclear reactors. Among the wide range of lumped models, we must highlight Kayan [1945], 

Oppenheim [1956], and Karplus [1958] as the oldest ones, and the most recent ones whose main 

objective was educational (Davies [1979 and 1994], Duffin & Knowles [1984], Baker & Shortt 

[1990], and Baughn & Rossi [1992]). In fact, discrete models used with educational aims 
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disappeared in 1960s with the emergence of digital computers which allowed solving problems 

with numerical techniques.  

Nevertheless, the development of digital computers as well as their implemented computational 

algorithms has allowed the use of the electrical analogy again. Powerful circuit simulation codes, 

whose design was not focused on a numerical tool use, and its complex computational algorithm 

to manage analogical and digital signals of high frequency, together with powerful data 

processing, as well as the choice of devices of zero tolerance, are the reasons that have fostered 

the use of numerical simulation technique based on the electrical analogy. From 1960s so far, 

numerous works have been published. Among them, we chronologically highlight: Horno et al. 

[1990], Bello [1991], Hamill [1993], González-Fernández et al. [1995 and 1998], Alarcón et al. 

[2002], Madrid & Alhama [2005, 2006], Zueco & Alhama [2006, 2007], Soto et al. [2007 a and b], 

Anwar Bég et al. [2009], Luna-Abad et al. [2010, 2017], Moya [2011], Marín et al. [2012], Morales 

et al. [2012 a and b], Sánchez et al. [2012], Sánchez-Pérez et al. [2015], and García-Ros et al. 

[2018, 2019 b]. 

Related to the electrical analogy applied to the processes of water flow through porous media 

(particularly soils), the reference to manuals and works is wide, and we intend to be exhaustive. 

Former classical manuals (Muskat [1937], Harr [2012], and Scott [1963]), which were before the 

development of digital computation, have broad references to these analogies, thoroughly 

describing those experiments carried out in the first years. In the field electrical analogy applied 

to groundwater problems, pioneer works are those of Weaver [1932], Pavlovsky [1933], Harza 

[1935], Vreedenburgh & Stevens [1936], Wyckoff & Reed [1935], Vreedenburgh [1936], Rel’tov 

[1936], Selim [1947], Babbitt & Cadwell [1948], and Khosla et al. [1954]. Returning to classical 

works, later authors such as Azizi [1999] did not make any references to these analogies at all, 

while Lambe & Whitman [2005] (as the oldest version of Taylor [1948]) hardly introduced a 

comment about electrical analogy, emphasizing its utility for educational purposes and some 

complex flow net problems. However, Juárez & Rico [2010], presented almost a chapter about 

the electrical analogy, describing both continuous and grouped-formulation methods.  

Nevertheless, flows through earth dams, ditches, wells and other ground engineering scenarios 

(the so-called gravity flows) present some difficulties that do not appear in the other physical 

problems and that the electrical analogy has not solved so far. In these scenarios there are 

special borders known as free and seepage surfaces whose length is not known a priori, so they 

cannot be directly implemented without applying some techniques, such as those applied by 

Schafferank [1917], Van Iterson [1916 and 1917], and Casagrande [1940]. Another manner of 

approaching these phenomena is including specific devices when designing the models, as 
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presented in Chapter V in which the models are explained. Continuing with the former studies, 

Muskat stated [1937]: ‘There is no immediate electrical analogue of the effect of gravity in a flow 

system’ and ‘the free surface in an electrical model must, therefore, be introduced artificially by 

varying the physical boundaries of the conducting model’. Due to this circumstance, these 

borders must be initially supposed to solve the problem and suitably correct them until a 

convergent solution is reached.  

Former continuous models can be classified as: 

 Laboratory prototypes, formed by two glass plates with a small separation where more or 

less fine sand is introduced; on these plates the original model borders are reproduced 

(affected by a scale) and, if necessary, piezometers are installed. Streamlines are displayed 

with tints. 

 Viscous flow models (tinted glycerines) between two plates slightly separated in which the 

hydraulic conductivity to model depends on the separation of the plates and the fluid 

properties (Helle-Shaw cell [1899], for horizontal flow). 

 Electrolytic model, the most flexible type, in which the points of the potential distribution 

maps in 2-D and 3-D were read by probes over an electrolyte model that simulates the 

barriers of the porous media by a nonconducting body; it was successfully applied to the 2-D 

problem of water flooding and 3-D problem of the suppression of water coning in partially 

penetrating oil wells by shale lenses (Muskat [1946]). 

 Plain sheet-conduction model, based on Pavlovsky´s prototype, in which impermeable 

borders were simulated by cutting out from the conducting sheet figures geometrically 

similar to the studied contour. 

Referring to the inconvenient of the previous models we can state that: first, those models 

cannot simulate infinite domains, having to set upstream and downstream the principle area 

(dam, for example) and, therefore, producing an error that can be relevant; second, it is difficult 

to implement non-homogeneous and/or anisotropic conditions of the porous media due to the 

lack of papers with different conductivities; third, as previously commented, there are problems 

to implement free and seepage surfaces.  

The first simulator of problems of confined flow, which was successful for classroom 

demonstration, was developed by Pavlovsky [1933]. As flow domain, he used high resistance 

material in sheets of metal or paper treated with colloidal graphite or even diluted copper 

sulphate solutions. Its inlet and outlet borders were painted with silver tint. The geometry 

corresponded to that of the physical scenario of the real problem. Batteries, high impedance 
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voltmeters and paper clips were also employed. The methodology consisted in obtaining the 

pattern of the equipotential lines, deducing from these the streamlines, as in isotropic soils both 

are perpendicular. Alternatively, streamlines could be directly obtained employing conjugated 

models (exchanging contour conditions). Layers with different permeability or hydraulic 

conductivity and non-homogeneous soils could be modelled by electrically equivalent regions 

or regions with proportional electrical conductivity, while isotropic soils were simply 

implemented transforming the dimensions of the studied flow regions. Finally, filters, drains, 

wells or other regions of ‘infinite’ permeability were implemented with high electrical 

conductivity materials. Pavlovsky’s models, known in 1918 but published in 1933, was improved 

by later authors (Babbitt & Cadwell [1948], Harza [1935], Khosla et al. [1954], Rel’tov [1936], 

Selim [1947], Vreedenburgh [1936], Vreedenburgh & Stevens [1936], Weaver [1932], and 

Wyckoff & Reed [1935]). 

Considering grouped models, they were formed by a set of permanent tables with electrical 

connections placed in a constant size cell where resistors of small power were connected. In the 

first models, Macneal [1953], errors were around 5% higher than those obtained by continuous 

models due to the production tolerance of the model components. The inconvenient of the 

implementation of free and seepage surfaces was not overcome by these models, which 

determined these lines by approximate methods and then corrected the values of the resistors 

in these contours (without changing the position of the table connections). Macneal [1953] and 

Landau [1957] indicated how the parameters of these models should be calculated, and this 

could be simply extended to 2-D and 3-D scenarios with a more complex elaboration of the table 

connections. In some institutions, permanent networks have been built employing resistors of 

variable resistance values. Moreover, it seems easy to extend the analogy with non-linear 

resistors (voltage-dependent resistors) to the study of water flow though soils with velocities 

above the range of validity of Darcy’s law, since the equivalent law for turbulent flow is known 

(Forchheimer’s law). Moreover, transient hydraulic flow can be simulated by connecting an 

electrical capacitor to each node of the net, while the other end of the device is connected to 

common ground.  
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II.4  The network simulation method (NSM) and the design of network models 

II.4.1 Concept 

Section II.4 must be written, since one of the main objectives of the thesis is to design tools 

based on the NMS. The theoretical fundamentals of this methodology are presented by Horno 

[2002]. This methodology has also been the basis for many other doctoral theses in which other 

engineering problems where studied (Alarcón [2001], Zueco [2003], Castro [2005], Soto [2007], 

Del Cerro [2009], Luna-Abad [2010], Morales [2012], Sánchez [2013], Marín [2013] and García-

Ros [2016]), and these can be consulted for more thorough explanations of the applications 

described in Horno [2002].  

The NSM essentially presents two steps. The first one is the design of a network model or 

electrical circuit which reproduces in an accurate way the behaviour or the phenomena involved 

in the studied physical problem. In the second step, the network model is simulated with a 

software for the resolution of electrical circuits and, then, the results (voltage and electric 

currents) are interpreted in terms of the physical variables of the problem. In order to build a 

correct network, it is enough to assure that: i) the finite-difference differential equations 

obtained from the spatial reticulation of the mathematical model (equations governing the 

physical problem) are formally equivalent to the equations of a network method for a volume 

element or cell of the physical domain (Laplace equation and Ohm’s law); and ii) the cells are 

connected until the whole domain is complete and boundary conditions are added from 

discretized equations in the contours, together with initial conditions. If transient problems are 

modelled, time is kept as a variable, although in the numerical resolution with the chosen code 

the time variable is also discretized.  

 

II.4.2 Electrical devices and model design 

The analogy between the real model and the circuit can be stablished following two ways that 

lead to conjugated models. This procedure will be slightly explained referring to any of the local 

governing equations that are part of a mathematical model. The most general expression of this 

equation presents the form 

∑ 
ୱ

୬
ଵ = 0           (II-30) 

where 
ୱ
 is a term or addend (1sn), and n is the number of terms. Of course, the equation is 

physically homogeneous, which means that it expresses a local balance of dimensionally equal 
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quantities. However, the expression of any of the addends can be either very simple or very 

complex (it may present more than one dependent variable, temporal or spatial derivatives of 

the variables, crossed derivatives, arbitrary functions of one or more dependent or independent 

variables, etc.). If the problem has more than one dependent variable, compatibility imposes 

the existence of as many governing equations as the number of this kind of variables. This allows 

stablishing a biunivocal relation (which is conveniently chosen) between the governing 

equations and dependent variables and separate circuits, independently of the existence of 

more than one of these variables in all or some of the equations.  

In the mathematical models involving flow problems (as those that will be presented in this 

thesis), the variables that appear in their equations are potential variables, their first derivative 

are proportional to flows which cross the borders of a volume element according to constitutive 

laws, and its temporary derivatives represent net flow that goes inside or outside the volume. 

Second spatial derivatives represent changes in flow per unit of length in each spatial direction, 

and these kinds of interpretation can be done for each type of term, although their meaning can 

be very complex. In this models, fundamental equations present balances of quantities (mass, 

heat, momentum …), so it is logical to assume that in the electrical analogy each term of 

equation (II. 30) is associated to the electric current, as well as associating the potential deriving 

the currents to electric voltage. In this way, in the network model, each addend is considered as 

the current in an independent branch which converges with the currents in the other branches 

(whose sense is compatible with the sign of the addend) in a common node (different for each 

cell and equation) whose voltage is the solution of the problem (this is, the potential variable of 

that cell, Figure 2.6). Since Kirchhoff theorems are conditions that are already integrated in 

codes for solving circuits, it is not necessary to verify numerical rounding for assuring the correct 

balance of currents or of the equation. This task is accurately done by the computer code with 

a high degree of approximation (nearly null errors).  
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Figure 2.6. Currents converging in a common node, centre of (i, j) cell 

How can we impose in each branch the current in every moment from the term associated to 

the equation? That is the second part of the analogy, and it only requires the knowledge of some 

rules. These are briefly described employing the nomenclature in Figure 2.7, and the terms of 

the equation are classified as: constant value terms, lineal terms in first and second derivatives 

of the potential variable, and non-lineal terms which includes coupled terms. 

 
Figure 2.7. Nomenclature of a generic 2-D cell (i, j) 

 Constant terms or time-dependent terms. They are directly implemented by a constant current 

generator or a time-dependent current generator. In the libraries of commercial codes there 
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is a wide variety of this generators with functional dependences that cover all the possible 

functions and special sources that can be used to reproduce any kind of term. These devices 

are connected to common ground or reference node and the central node. It is the device 

named as I constant for the constant current generator, and I (t) for the time dependent 

current generation in Figure 2.8.  

 Terms in first order spatial finite differences. For spatial variable x, they have the form 
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where a1 is a constant. They are implemented by an electric resistor, since the constitutive law 

that involves voltage and current in a resistor is Iୖ =
୚

ୖ
, where IR is the current in the resistor, 

V is the potential difference (V) between its ends, and R the resistance value in the resistor 

() that is obtained comparing the previous equations in the analogy, R =
୶

ୟభ
. Its connection is 
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∆୶

ଶ
, j and i −
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 Terms in second order spatial finite differences. For the spatial variable x are of the form 
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where a3 is constant. This is implemented by two resistors, R୶,ୠ R୶,ୡ . The implemented device 

is also a resistor R in Figure 2.8. The two resistors are of the same value, R୶,ୠ = R୶,ୡ =
(୶)మ

ଶ ୟయ
 for 

variable x, connected to the ends and the centre of the cell. R୷,ୠ = R୷,ୡ =
(୷)మ

ଶ ୟర
 are the resistance 

values for variable y.  

 First order temporal derivatives. Their form is cଵ
ௗೞ

ௗ୲
, where c1 is a constant. They are 

implemented by a capacitor, since the law involving voltage and intensity is of the form Iୡ =

C
ௗ୚

ௗ୲
, where Ic is the current in the capacitor, C is its capacity (F) and ௗ୚

ௗ୲
 the variation rate in time 

of the voltage between its ends. It is immediate to see that C = cଵ. Figure 2.8 shows a capacitor, 

named as C. 

 Non-lineal terms, coupled terms (involving more than one dependent variable), crossed 

derivatives and others that can be implemented by special devices known as ‘control current 

source’; the control function can only have either potential variables (‘voltage controlled 

current source’) or current variables (‘current controlled current source’). When the source is 
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simultaneously controlled by the two variables, auxiliary circuits must be designed to 

transform one variable to the other. Generally, it is a device whose outlet current is an arbitrary 

function or product of arbitrary functions. These possible functions include dependent and 

independent variables, or the currents of other devices of the model. The versatility in the 

application of these devices is very wide, allowing the implementation of any kind of term 

thanks to auxiliary circuits to build intermediate variables or functions. In order to specify these 

sources in the text file of the network model, the expression of the term and the nodes or 

devices of the models in which the variables must be read is written. The devices are connected 

to the common node and the cell centre with an electric polarity according to the algebraic 

sign of the term in the equation. Figure 2.8 shows a voltage controlled current source, named 

as G.  

 Boundary conditions, as well as the governing equation, must be spatially discretized, and its 

application to the contour cells do not imply the use of new devices. First class condition are 

simple batteries (displayed as V in Figure 2.8) of constant value while second class are 

modelled as constant current sources (I constant), or resistors of infinite resistance value if it 

is a homogeneous condition (R). For more complex conditions, those controlled sources 

previously mentioned are used.  

 Finally, terms which present both third order and higher order spatial discretization, second 

order and higher order crossed derivatives are implemented following similar rules, but they 

are not presented in this thesis as they are not applicable in problems of flow through porous 

media. Morales et al. [2012 b], Perez et al. [2016], and Alhama et al. [2012] did employ models 

involving these terms.  

 The implementation of any kind of conditions, which are necessary for modelling processes of 

wetting and drying in infiltration phenomenon, is done employing switches or programming. 

Ngspice, as other codes for the simulation of circuits, presents controlled switches in its library. 

Switches states, ON (active or closed) and OFF (deactivate or open), are actioned when certain 

values or voltage and/or current in some nodes or devices in the model are reached. When 

switch is on, its inner resistance is negligible, so the connection between the nodes is ideal; 

when it is off, the resistance value is considered as infinite, so the devices are electrically 

isolated. In Figure 2.8, a switch named S is symbolized. 
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Figure 2.8. Devices implemented in Network Simulation Method 

Once the design of the cell network model is complete, it must be connected to the adjacent 

cells to model the whole domain. This connection can be carried out by coding or by employing 

specific functions of the circuit software (if it has it). Contour cells are usually special, because 

sometimes the network model is not compatible with the imposed conditions, and approximate 

solutions must be used. Including contour and initial conditions (the last could be certain voltage 

or charges in the capacitors before starting the simulation) completes the network model.  

In the dual model, the addends of the equation are considered voltages and its addition leads 

to a network model in which there is only one close branch containing as many elements as 

addends the equation has. The unknown variable that makes the solution compatible is the 

intensity, which must adjust to meet Kirchhoff’s theorem of voltages. Horno [2002] presented 

some applications of dual models.  

 

II.4.3  NSM as numerical tool  

NSM is, indeed, a numerical tool, since it numerically solves the equations governing the 

network model of the problem. It leads to results of negligible errors whenever the number of 

volume elements is sufficient large. Moreover, initial and contour conditions, as well as the 
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physical characteristic of the medium, can be altered in order to reach solutions beyond those 

that can be obtained with real measures. The simulation is structured in the following basic 

subprograms (Figure 2.9): 

 Data input. In this, devices and nodes in the model have been correctly stablished and 

verified, warning about any mistake in the elaboration. In addition, during this step it is 

also verified that the operational requirements in DC (direct current) are met (a test that 

removes errors which are difficult to find).  

 Organization. It builds the data structures that are needed for the computational 

analysis subprogram, which is the essential core of the code, with complex algorithm 

which takes most of the computation time.  

 Computational analysis (simulation). It is structured in different tasks: equation 

formulation, lineal equation solution and numerical integration when needed.  

 Data output. It organizes and saves solutions in tables for its later graphical presentation 

with routines and auxiliary codes. 

 
Figure 2.9. Blocks of Ngspice simulation software 

Ngspice [2016] derives from Pspice, another software for the simulation of circuits. Pspice comes 

from a software family, SPICE2 (Nagel [1975]), which was developed from 1960s in University of 

California, Berkeley. Its powerful calculation algorithm and its extended use is a proof of its 

power for the treatment of a wide variety of problems. Among the investigation works that have 

employed these software, the following can be highlighted: Castro et al. [2005] in mechanical 

vibrations, Zueco & Alhama [2006, 2007], Zueco et al. [2005, 2006], and Alhama & Zueco [2007] 

in inverse problems of heat transfer, Benavent et al. [2010] in sound emission, Anwar Bég et al. 
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[2009] in magnetohydrodinamics, Soto [2007] and Soto et al. [2007 a and b] in problems of fluid 

flow and solute transport, Luna-Abad et al. [2010] in the optimization of heat dissipation fin, 

Morales et al. [2012 a and b] in elastostatics, Marín et al. [2012] in tribology, Sánchez et al. 

[2012] and Sánchez-Pérez et al. [2019] in corrosion, Moya [2011] in electrochemistry, Cánovas 

et al. [2015] in flow with heat transport, Perez et al. [2016] in mechanical problems, and García-

Ros et al. [2018, 2019 b] in non-lineal soil consolidation. Moreover, different software in which 

NSM is employed as numerical calculation tool have been patented: PRODASIM [2005] and 

PROCCA-09 [2005] for problems of heat transfer and fin design; FATSIM-A [2010] and FAHET 

[2011] for the simulation of fluid flow with solute and heat transport, respectively; EPSNET_10 

[2011] for elasticity problems; OXIPSIS-12 [2013] for corrosion problems; CODENS-13 [2014] for 

the simulation of coupled ordinary differential equations; SICOMED_3D [2017] and EDUCONSOL 

[2018] for the simulation of soil consolidation; CONCRELIFE [2019] for the calculation the service 

life of reinforced concrete structures in marine environments.  

 

II.5  Programming with Matlab 

MATLAB ® (Matlab [2015]) is a technical calculation high-level language as well as an interactive 

environment for developing algorithms, numerical calculation, data visualization and analysis 

and programming. It is currently used by millions of engineers and scientists as a tool to explore 

and display ideas. Moreover, it allows working in signal and image processing, communication, 

control systems and computational finances.  

Coding with Matlab allows analysing data, developing algorithms and creating applications and 

models. This language and the tools and mathematical functions implemented in the software 

facilitate the exploration of the multiple possible approaches, reaching to a solution faster than 

employing spreadsheet (for example, Microsoft Excel ® files).  

For the research presented in this thesis, Matlab has been used for both data importation and 

exportation, since it allows the interaction of the developed tool with other software, such as 

Ngspice. Moreover, Matlab has been employed to develop the code for the two numerical tools 

used to obtain the universal solutions, one for flow under dams (DamSim) and another for flow 

in unconfined aquifers due to a pumping well (WaWSim). For each of the software, Matlab was 

used for three different aspects: 

i) It was the language for elaborating the text files for the network models of each 

problem. 
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ii) It was employed for developing the user interface (window environment). 

iii) It was used to program the routines for the graphical representation of results. 

As a powerful tool for the design and edition of graphical user interfaces, Matlab has allowed 

developing an interactive environment for the two developed software. In addition, it has been 

used for their design, providing the most common components, such as drop-down menus 

buttons, tool bars, list boxes, among others.  

According to all these, the user interfaces that have been created are composed by different 

windows with controllers (components) that allow the user to interactively introduce the data 

and visualize the results once the simulation has been run. In this way, the user does not have 

to create, modify or understand the script or write command lines to carry out the 

corresponding tasks. 

All in all, the user interfaces created with Matlab can carry out any kind of calculation, read and 

write data files, launch other software, communicate with other user interfaces and show results  

as tables, individual data and graphics. 

 

II.6 Ngspice computer program  

Ngspice is a circuit simulation software for non-lineal and lineal analysis with BDS license (free 

software). Circuits can involve resistors, capacitors, inductors, dependent or independent 

voltage or current sources, semiconductor devices, etc.  

As commented before, it is an update Spice3f5, the last version of the free code simulator Spice3 

developed by EECS Department of the University of California at Berkeley, in 

http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/. It includes all its characteristics and 

most of the bugs have been fixed. This software is sustained by a great user community which, 

providing new characteristics, improvements and bug-fixing (Ngspice project). It is based on 

three free software packages: 

 Spice3. Origin of all electronic circuit simulators. Its successors are widely employed by 

the electronic community.  

 Xspice. Extension of Spice3 that provides additional code models in C language to 

support modelling the analogical behaviour and the co-simulation of digital devices 

employing a pushed algorithm of fast event.  
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 Cider. It adds a numerical device simulator to Ngspice, and coupled to the simulator, it 

provides a higher accuracy to the simulation (although higher computational time is 

needed).  

Ngspice is a software in continuous evolution, since its great number of users contribute to its 

bug-fixing and improvements, which has led to additional characteristics and higher robustness.  

Ngspice is implemented with three types of analysis: i) non-linear analysis; ii) transient non-

linear analysis, which includes transient noise simulations; and iii) AC linear analysis, which 

includes small noise signal simulations and a function of pole-zero and transference analysis. Its 

Windows® version presents a simple user interface, Figure 2.10, a small console in which data 

input and command lines are introduced. It also provides text output.  

 
Figure 2.10. Command line input console of Ngspice 27 software 

With these command lines, which can be included in the circuit file to analyse (text file with 

extension .cir), the result printing can be carried out by dumping Ngspice results into text files 

(.txt). The new text files can be exported to Matlab, as done in this thesis, or any other software 

of numerical calculation, so data can be processed and results displayed. In this way, as 

previously described, Ngspice can solve the chosen scenarios once they have been transformed 

into an electrical circuits.  
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Chapter III. Permeability and hydraulic 

conductivity units 

 

 

The objectives of this chapter are explained firstly. Section III.2 shows a historical overview of 

the different methodologies that have been developed to calculate the value of permeability 

and hydraulic conductivity. In Section III.3 Darcy’s and Forchheimer’s expressions are studied 

employing Pi theorem in first place, and then the discrimination is introduced. Section III.4 

includes the deduction of the dimensional character of permeability, and the lack of relevant 

results associated with these solutions leads to Section III.5, in which the fluid energetic 

potential is introduced as a new unit in the dimensional basis. In this way, a dimensionless group 

governing problems of water flow through anisotropic soil can be deduced, and the dimensional 

equations and units of the variable h, the hydraulic potential or water head (widely used in 

hydrogeology), are obtained. These procedure also allows assigning a physical meaning to the 

units of h. 

 

III.1 Importance of permeability and hydraulic conductivity 

The importance of permeability is reflected in the major effort of many authors in both empirical 

and theoretical field. In the last area, research has been focused on achieving more or less 

complex formulations. Nevertheless, this effort has not been applied on the investigation of the 

dimensional character of the parameter, which is a necessary information to find reliable 

dimensionless groups that involve this parameter and rule the solution patterns for the 

problems of flow through porous media, especially in anisotropic scenarios. There is almost no 
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dimensional study of Darcy’s and Forchheimer’s laws in the existing literature, further than the 

investigations carried out long time ago by Muskat [1937], based on Pi theorem (Buckingham 

[1914]) and later, to a lesser extent, by Taylor [1948]. Muskat, who was very knowledgeable of 

Pi theorem in its classical from, insisted on justifying these empirical laws as limit cases of a 

general dependences in which the effects of pressure, inertial and viscous forces are involved. 

However, his conclusions were of little use if intending to apply them in the deduction of the 

dimensionless groups we are interested in, and even less in anisotropic scenarios for which no 

useful solution was developed. Beside leading to the deduction of these two laws, the 

application of Pi theorem in its discriminated form allows:  

i) Justifying the emergence of the product Re (friction factor·Reynolds number) as a 

dimensionless group. 

ii) Delving into the dimensional complexity of permeability. 

iii) Deducing an inaccurate dimensional equation that cannot be employed for the 

characterization of the anisotropic media. 

The spatial discrimination, together with the emergence of the energetic potential, h, as a 

substitute of the mass quantity in the classical basis (justifiably due to the lack of inertial forces 

in Darcy’s law,) allows the definition of the new basis {Lx,Ly,Lz,T,}, where  is the dimension of 

the potential variable, and it leads to surprising results. This new basis does not bring a concrete 

dimensional equation for permeability, although it does permit obtaining it for hydraulic 

conductivity. This research line is justified in the application of the discrimination (originally 

proposed formally by Palacios [1964]) to the dimensional theory, whose result is generally 

redefining the basis and obtaining more accurate groups and, in many cases, a lower number of 

them. This simplifies the solution and makes its graphical representation with universal curves 

easier.  

Indeed, the introduction of the energetic potential in the basis has two effects:  

i) Removing Newton’s law of viscosity from the problem (because it is unnecessary), so 

viscosity is just a physical parameter involved in the hydraulic conductivity.  

ii) As this energetic potential does not have spatial discrimination, the hydraulic 

conductivity emerges with its own dimensions and, therefore, new dimensionless 

groups in anisotropic domains can be deduced.  

These groups degenerate in simpler ones, which are also new, when removing viscosity 

parameters, as its value does not depend on the spatial direction.  
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III.2 Permeability and its determination. A brief historical review 

Physically, general porous media are formed by grain or particles of different sizes, packed in 

varying degrees of density, materializing its internal structure (skeleton). This structure presents 

numerous voids or pores of also different sizes (porosity), which are partially or totally 

connected among them, creating flow paths. The tortuosity of those pathways also depends on 

the grain shape (angularity), as well as on the chemical deterioration that may exist in their 

contacts. In this way, grain size, compaction, porosity, connectivity and tortuosity (this one 

linked to angularity), which are not independent, are the basic physical properties of the porous 

media. However, two of the properties are measurable without correlation between them: 

porosity and hydraulic conductivity. Heterogeneity in the shape and the size of particles in 

natural materials and their compaction and cementation degrees determine the broad ranges 

of porosity and permeability in these media (Muskat [1937]). 

Darcy [1856] wrote his law as Q=Aκi, where Q is the water flow (m3/s), A is the cross section 

transverse to flow direction (m2), h is the hydraulic or piezometric potential (energy per unit of 

fluid weight, usually measured in m), and i is the hydraulic gradient, ௗ୦

ௗ୶
, commonly assumed by 

most authors, texts and papers as dimensionless. κ is the hydraulic conductivity parameter and 

its units is m/s, according to this law. Muskat replaced variable h by pressure (p) and expressed 

the law as v =
୩

ஜ

ୢ୮

ୢ୶
, introducing a new parameter, k (m2), which is known as permeability and is 

related to hydraulic conductivity by  

k =
சஜ

஡୥
            (III-1) 

where g is gravitational acceleration and ρ is the fluid density. Permeability can be obtained with 

formulation in which geometrical properties of the studied soil are involved (Mavis & Wilsey 

[1936] and Anderson [1940]), or by laboratory tests in a more precise way (as long as the soil 

samples are kept unaltered). Developed formulas for the permeability calculation are, 

chronologically presented, those of: Hazen [1892]; Slichter [1899]; Terzaghi [1925], who 

introduced a variation of Slichter expression for sands with heterogeneous grains of different 

shapes; Kozeny [1927], who obtained an expression from Poiseuille equation for capillary tubes; 

Mavis & Wilsey [1936]; Carman [1938 and 1939], who verified Kozeny’s expression; Anderson 

[1940] and Wyllie & Rose [1950]. The last expression, which was obtained by dimensional 

analysis, is applied to porous media with grains of constant diameter with a modification for 

soils with different grain sizes by introducing a shape factor.  
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A proof of the lack of accuracy of the different theoretical and even semi-empirical formulations 

for calculating hydraulic conductivity (κ) of porous media can be found in Kozeny’s research 

[1927]. He compared three of the solutions (Hazen, Krüger and Kozeny) with experimental 

values, and obtained discrepancies that went from -36 to 180% (Hazen), from -50 to 84% 

(Krüger), and from -68.7 to 85.7% (Kozeny). Moreover, Fancher et al. [1933], among other 

results, obtained values for conductivity that were 45 time larger for grain differences of 2%. 

Referring to the cementation degree (which is hard to consider and measure), it has been 

concluded that small contents of cementing particles (from 5.6 to 22.7%) produce large changes 

in the porosity and, therefore, variations in conductivity higher than these percentages.  

After these classical authors, hydraulic conductivity has been again studied in several 

investigations. Chronologically, Loudon [1952] checked the validity of the previous formulation 

with different experimental results for a broad range of sands. He concluded that Hazen’s 

expression, although very useful due to its simplicity, does not lead to accurate results to the 

extent of ±2 times, while Kozeny’s is more precise. Moreover, if empirical corrections are 

included in this Kozeny’s expression in order to consider the specific surface, the angularity 

factor and the coefficient of rugosity of the grains (Robertson & Emödi [1943]), the hydraulic 

conductivity of sand can be computed to an accuracy of about ±20%. These authors also proved 

that sands with higher angularity or specific surface are more permeable than those with round 

sand of the same porosity.  

Other authors, such as Wise [1952], Herdan [1960], Gray [1968] and Scheidegger [1974] tried to 

find a general theory, although their search was not very successful. By the end of 20th century, 

Åberg [1992 a and b] also investigated in this field, developing a simple stochastic model for soils 

and other granular materials based on its grain-size distribution, grain shape, degree of 

densification and other variables. Åberg defined the porous medium resistance in a viscous 

addend (proportional to the specific discharger, q) and an inertial addend (proportional to q2). 

In each term a different representative grain side is involved. Later, Carrier [2003], in his 

technical note, recommended to simply retire Hazen’s formulation [1892], based on D10 (particle 

size in cm, for which 10% of the soil is finer), and replaced it with Konezy-Carman (Konezy [1927] 

and Carman [1938, 1939]), which considers the entire particle size distribution, the particle 

shape and the void ratio. On the one hand, Carrier thoroughly described the limitations in 

Hazen’s expression (0.01 cm < D10 < 0.3 cm) and gave a list of authors who assigned different 

ranges to the constant factor in this formulation (going from 1 to 1000 according to each author). 

He did the same with Kozeny-Carman’s formulation, providing expressions for the specific 

surface in homogeneous and non-homogeneous isotropic soils, and in angular soils (with 
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limitations). Odong [2007] confirmed that Kozeny-Carman’s formulation is the one which gives 

closer results to the experimental ones.  

Recently, Shin [2017] introduced the tortuosity for the determination of Kozeny’s hydraulic 

diameter of the porous media. The hydraulic diameter has been employed to date as the most 

accurate parameter for the calculation of the permeability coefficient with grains of the same 

size. The parameter already included fundamental geometrical features such as grain size, 

packing and grain shape. According to the author, the tortuous hydraulic diameter is the most 

important characteristic parameter governing porous flow aspect. Introducing the new 

parameter, the deviations with the experimental results are reduced from 12.8% to 1.67%, 

which is demonstrated by employing numerical computation (CFD).  

 

III.3 Pi theorem, discrimination and Darcy’s and Forchheimer’s laws 

In fluid mechanics, the dimensional basis commonly used is {M,L,T} (mass, length and time 

quantities, respectively). According to the common basis, the hydraulic or piezometric potential 

(gravitational and pressure potential energy per unit of fluid weight) has the dimension of [h]=L, 

which means that the hydraulic gradient, i =
ௗ୦

ௗ୶
, is dimensionless. With all this and employing 

Darcy’s law [1856] as Q = Aκi, the dimensions of the hydraulic conductivity can be immediate 

deduced, [κ] = LTିଵ. As previously mentioned, it is widely accepted by the scientific 

community and it does not affect the experimental researches that are carried out in this field.  

Not numerous comments can be found in scientific literature about the dimensional character 

of permeability. In this way, Loudon [1952] refined the definition for κ saying that ‘permeability 

(he referred to hydraulic conductivity) is expressed in centimetres per second per unit of 

hydraulic gradient’, which is practically saying that the unit of the hydraulic conductivity is m/s. 

Åberg [1992 b], as commented in the previous section, adopted dimensional concepts to justify 

the choice of different grain sizes in the inertial and viscous terms in the flow resistance. Finally, 

Shin [2017], based on the experimental evidences and perhaps on the results from the internal 

friction flow analysis (Fancher et al. [1933]), used the product of the friction factor and the 

Reynolds numbers (Re) to characterize the flow through porous media, a non-coherent 

approach with the application of Pi theorem, since both Re and , are dimensionless groups by 

their own. As far as we know, no other comment of interest appears in the literature related to 

the dimensional character of permeability or conductivity, apart from those thoroughly 

presented in the following section.  
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III.3.1 Darcy’s law and Pi theorem  

Muskat [1937] has been the only researcher who deeply reflected about the dimensions of the 

parameter related to Darcy’s law [1856], originally expressed in the form Q = C
୅

୐
(h), where 

Δh is the piezometric or hydraulic potential difference along the distance L in the porous sample. 

Muskat wrote this law in the way that has been previously mentioned 

Q = C୭
୅

୐
(p)          (III-2) 

where Q is the groundwater flow (m3/s) through a porous medium of cross section A (m2) and 

length L (m), caused by the pressure difference Δp (N/m2). Using the classical basis {M,L,T}, the 

author deduced that Co is a dimensional constant which involves the physical properties of the 

fluid (viscosity and density) and geometrical properties of the porous medium. The physical 

meaning of the constant is complex to find according to its dimensional equation ([C୭]=M-1LT-1) 

or its units (mkg-1s-1), although its experimental determination is immediate. To obtain this 

equation with dimensional considerations (Pi theorem, Buckingham [1914]), and citing 

Bridgman [1931], Muskat started from a list of six relevant variables, {{p,,,d,v,s}}. In this 

list Δp is the pressure difference (N/m2), ρ the density (kg/m3), μ the fluid dynamic viscosity 

(kg·m-1·s-1), d a characteristic length (m) equivalent to the average pore or grain size because 

both of them are proportional, v the average fluid velocity (m/s), and Δs the length of the sample 

(m). The dimensional equations of these quantities are (involving the variable p in Muskat’s 

deduction all the energetic effects but those of velocity, since they can be neglected in flow 

through porous media): 

[p] = MLିଵTିଶ          (III-3) 

[] = MLିଷ          (III-4)  

[d] = L           (III-5)  

[v] = LTିଵ          (III-6) 

[] = MLିଵTିଵ          (III-7) 

[s] = L           (III-8) 

With these equations, Muskat determined the three dimensionless groups that characterize the 

problem, which are  

ଵ =  
(୮)ୢమ

మ ,     ଶ =  
୴ୢ


,  ଷ =  

(ୱ)

ୢ
,      (III-9) 

According to Pi theorem, the solution is ଵ = F(ଶ,ଷ), or  
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(୮)ୢమ

మ = F ቄ
୴ୢ


,

(ୱ)

ୢ
ቅ          (III-10) 

where F is an unknown function. To qualify, Muskat wrote Equation (III-10) in the form  

(୮)ୢమ

మ = Fଵ ቄ
୴ୢ


ቅ  Fଶ ቄ

(ୱ)

ୢ
ቅ         (III-11) 

an expression that does not strictly adjust to Pi theorem, which states there should be only one 

function. After the considerations based in the experimental results of other authors, and with 

the aim of refining his deduction, Muskat directly assumed that (୮)
మ  is a lineal function of the 

monomial (ୱ)

ୢ
. Therefore, the former expression is reduced to  

୮

ୱ
=  

మ

ୢయ F ቀ
୴ୢ


ቁ         (III-12)  

In order to support this simplification, it can be said that removing of one of the monomials (ଵ 

or ଷ) is simply justified by the fact that p and s do not play independent physical roles in the 

solution, but a single role by the ratio p/s. This hypothesis reduces the list of relevant 

variables to five elements, {{p/s, , , d, v}}.  

The argument of F is the so-called Reynolds number, Rୣ =
୴ୢ


, known in the fluid flow analysis 

in ducts. For Muskat, Equation (III-12) is simply a ‘dimensional’ equation to determine the 

character (either laminar or turbulent) of flow in pipes. For laminar flow in circular pipes, 

according to experimental results, Equation (III-12) approaches to the proportionality ratio 

୮

ୱ
= Cଵ ቀ

୴

ୢమቁ           (III-13) 

known as Poiseuille’s law, where C1 is a dimensionless constant. For turbulent regimen, Equation 

(III-12) becomes independent of viscosity and its proportional to the squared value of velocity: 

୮

ୱ
= Cଶ ቀ

୴మ

ୢ౥
ቁ           (III-14) 

where C2 is a dimensional constant. According to these results, different authors have selected 

distinct expressions for the relation between ୮

ୱ
 and v for the porous media. For instance  

୮

ୱ
= aଵv, ୮

ୱ
= aଵv + aଶv୬ or ୮

ୱ
= aଷv୬      (III-15) 

where a1, a2 and a3 are dimensional constants, and n is a number between 0 and 1, so the most 

reliable results of Darcy law (Fancher et al. [1933]) concludes that: 
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(i) for low average velocities: ୮

ୱ
= aଵv  (equivalent to Darcy’s law)  (III-16a) 

‘laminar viscous flow’ 

(ii) for higher velocities: ୮

ୱ
= aଵv + aଶv୬ (୮

ୱ
 is increased faster than v)   (III-16b) 

‘partially or totally turbulent flow’ 

Indeed, this occurs. Experimental logarithmical charts from these authors, which relate the 

friction factor,  =
(୮)ୢ

ଶ୐୴మ, with Reynolds number, Rୣ =
୴ୢ


 (where d is the average grain 

diameter), confirm that for Re<1, Rୣ= constant (validating Equation (III-16a)). This is 

୮

୐
 

ୢమ v,  or ୮

୐
= Cଷv       (III-17) 

where C3 is a dimensional constant. Muskat, in a footnote, discussed the physical meaning of d, 

stating that: ‘Physically, of course, the parameter d should represent the average pore rather 

than the grain diameter. However, as the former can be directly measured only by microscopic 

examination of the cross section of the porous medium itself, all attends to define or use a value 

of d to enter into the Reynolds number have referred to the averages of the actual grains 

diameter’. 

The strongest example to confirm Equation (III-16b) is Lindquist’ experiment [1933], in which 

the water flow through a column of uniform pellets is studied. In this experiment, the value of n 

is 2. His results, presented in plots of Rୣ versus Rୣ, separate this dependence in two straight 

lines: the first one, completely horizontal (for 0<Rୣ<4, approximately); and the second one with 

positive slope (for Rୣ>4), which adjusts to the line equation Rୣ = C4+ C5Rୣ, where C4 and C5 are 

dimensional constants. As Rୣ =
ଵ

ଶ

(୮)

୐
ቀ

ୢమ


ቁ ቀ

ଵ

୴
ቁ, the expression can be written in the form 

ଵ

ଶ

(୮)

୐
ቀ

ୢమ


ቁ ቀ

ଵ

୴
ቁ = Cସ + Cହ

୴ୢ


, or finally,  

(୮)

୐
= ቀ

ଶେర

ୢమ ቁ v + ቀ2Cହ

ୢ

ቁ vଶ =  C଺v + C଻vଶ       (III-18) 

This formulation is similar to Equation (III-8b). The limit value in the graphic, Re4, is a mere 

indication of the value of Re which separates viscous flow, described by Rୣ = constant or ୮

ୱ
=

aଵv (Darcy’s law or Equation (III-16a)) from partially or totally turbulent flow, described by ୮

ୱ
=

aଵv + aଶv୬(Equation (III-16b)). The capillary and irregular nature of the porous media is without 

doubt the reason why the transition from viscous to turbulent regimen is not as sharp as in the 

case of empty tubes or ducts. In this case, it is a diffuse transition region.  
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All in all, Muskat summarized his conclusions about Darcy’s law (exclusively referring to sandy 

soils), stating that it was a reliable approach to what he called ‘law of flow’ or Equation (III-12), 

୮

ୱ
=  

మ

ୢయ F ቂ
୴ୢ


ቃ, deduced by dimensional argumentation (Pi theorem). Its validity range, 

however, is difficult to stablish due to the lack of definition of the parameter of the porous media 

or characteristic length, d, which appears in Re. Therefore, it would determine the laminar or 

turbulent nature of the flow. In this way, from the previous explanations, it can be deduced that 

the effects of porosity, connectivity, tortuosity, grain size, and compaction and cementation 

degrees are the cause of the lack of definition and knowledge of the characteristic length, d. This 

would be equivalent to admit that it is impossible to carry out a rigorous dimensional treatment 

which leads to an accurate dimensional equation for permeability.  

 

III.3.2 Discrimination and Darcy’s and Forchheimer’s laws  

Discrimination, in dimensional analysis theory (Palacios [1964], Alhama & Madrid [2012]) that 

includes Pi theorem as the most useful tool in the search of the dimensional groups that 

characterize a physical problem, assumes the existence of extended dimensional bases instead 

of the classical one {M,L,T}.  

One manner of discrimination is spatial, which assumes different dimensional equations for each 

of the lengths that define the spatial directions as well as the derived quantities involving these 

lengths, such as velocity, acceleration and forces. In this way, rectangular geometries have a 

spatially discriminated basis involving five quantities, {Lx,Ly,Lz,M,T}, and its use generally leads to 

more accurate results than the classical Pi theorem (which does not consider discrimination), 

especially in anisotropic media. Because of its application, many of the classical numbers, such 

as Reynolds, Peclet and Rayleigh, have dimensions and do not express a balance of quantities 

that counteract in the system or the whole physical scenario, since its value is generally much 

higher or lower than unit). Nevertheless, discriminated dimensional groups do express balance 

of quantities and, consequently, are of the order of magnitude of the unit (Alhama & Madrid 

[2012]).  

There are other kinds of discriminations which present a rather conceptual character. For 

example, including in the dimensional basis two different masses, one related to inertial effects 

and another one related to countable effects (water flow measure) or, as presented later in the 

chapter, potential quantities (for example the piezometric head).  
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Is it possible to derive Darcy’s law from discrimination and Pi theorem? Theoretically it is, and 

that is what it is intended in this section. For this, a discriminated dimensional basis applicable 

to any geometry {M, L, Lvis, Ln, T}, where L is the spatial dimension in the direction of the flow, 

Lvis is the spatial dimension in the direction perpendicular to the previous and that has been 

chosen so both directions define the plains of viscous surface, and Ln is the third spatial direction, 

normal to the other ones. In this way viscous surfaces Svis have dimensions [Svis]=LLvis. 

In this basis, the dimensions of the different quantities involved in  and Rୣ, and what has been 

called previously in this chapter list of relevant variables of the problem {{p/L, d, v, ,}}, are: 

[p/L] = [ ୤

ୗ ୐
]= ୑୐୘షమ

୐౬౟౩୐౤୐
 = ML୴୧ୱ

ିଵ L୬
ିଵTିଶ       (III-19a)  

[d] = L୬           (III-19b) 

[v] = LTିଵ           (III-19c) 

[]= [ ୤౬౟౩

ୗ౬౟౩ቀ
ಢ౬

ಢ౤
ቁ
] = ୑୐୘షమ

୐౬౟౩୐
ై౐షభ

ై౤
 
 = ML

ିଵL୴୧ୱ
ିଵ L୬Tିଵ= MS୴୧ୱ

ିଵL୬Tିଵ    (III-19d) 

[]= [ ୫ୟୱୱ

୴୭୪୳୫ୣ୬
] = ୑

୐౬౟౩୐୐౤ 
 = ML

ିଵL୴୧ୱ
ିଵ L୬

ିଵ = MS୴୧ୱ
ିଵL୬

ିଵ     (III-19e) 

Intentionally, the direction for d has been chosen perpendicular to the viscous surface, so its 

value would be related to the average pore size. It is also important to highlight that the direction 

for the forces derived from pressure that has been chosen is the same as the one for velocity, 

as it is in this direction in which the pressure quantity produces effect. According to the previous 

expression, the dimensions for  and Rୣ are: 

[] = [
(୮)ୢ

ଶ୐୴మ]= (୑୐୐౬౟౩
షభ ୐౤

షభ୘షమ)(୐౤)

(୐)(୑୐
షభ୐౬౟౩

షభ ୐౤
షభ)(୐

మ ୘షమ)
 = ୐౤

୐
      (III-20) 

[Rୣ] = [୴ୢ


]= (୐୘షభ)(୑୐

షభ୐౬౟౩
షభ ୐౤

షభ)(୐౤)

୑୐
షభ୐౬౟౩

షభ ୐౤୘షభ  = ୐
୐౤

       (III-21) 

so the product Rୣ =  ቀ
(୮)ୢ

ଶ୐୴మቁ ቀ
୴ୢ


ቁ =

(୮)ୢమ

ଶ୐୴
 has null dimension. In order to make this 

monomial the only dimensionless group that characterizes the behaviour of the problem, it is 

necessary to remove ρ from the list of relevant variables, since it does not appear in the 

expression, but that would mean to neglect the inertial effects!. 

Indeed, this happens because this parameter is directly linked to these effects, in the same way 

that μ is to viscous effects, and Δp is to those effects caused by pressure forces. However, v is 

directly connected to inertial effects and indirectly to viscous ones through its gradient, while L 

and d, as the contours of the domain in which the forces per unit of volume are balanced, can 
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appear involved in the three effects. For negligible inertial forces, if compared to viscous and 

pressure forces (or such low velocities that this hypothesis can be assumed), the only 

discriminated dimensionless group governing the problem is  

୮୰ୣି୴୧ୱ = Rୣ =
(୮)ୢమ

ଶ୐୴
 1         (III-22) 

where the subscript ‘pre-vis’ means that it is a monomial in which the two forces, viscous and 

pressure, are balances. This is the reason why the monomial has the order of magnitude of unity, 

since it is assumed that both intervene and influence the process to the same degree. The fluid 

loses pressure (or pressure energy) as energy is dissipated by viscous friction. In this way, 

v  
୮ୢమ

୐
= ቀ

ୢమ


ቁ
୮

୐
, a coherent result with Darcy’s law. 

For the general case in which the three kinds of forces (pressure, inertial and viscous) exist, the 

independent dimensionless groups that can be obtained from the list of variables 

{{p/L,d,v,,}} with the dimensional Equations (III-19 a to f) are two, and can be written in any 

of the following forms: 

୮୰ୣି୴ =
(୮)ୢమ

ଶ୐୴
 ,   ୮୰ୣି୧ =

(୮)

୴మ       (III-23a) 

୮୰ୣି୴ =
(୮)ୢమ

ଶ୐୴
 ,   ୧୬ୣି୴୧ୱ =

౦౨౛ష౟

౦౨౛ష౬౟౩
=

୴ୢమ

ଶ୐
    (III-23b) 

୧୬ୣି୴୧ୱ =
౦౨౛ష౟

౦౨౛ష౬౟౩
=

୴ୢమ

ଶ୐
 ,  ୮୰ୣି୧୬ୣ =

(୮)

୴మ       (III-23c) 

Adopting any of these pairs and employing Pi theorem, for example the first one, the solution 

of the problem is ୮୰ୣି୴୧ୱ = F൫୮୰ୣି୧୬ୣ൯, or  

(୮)ୢమ

ଶ୐୴
= F ቀ

୮

୴మቁ          (III-24) 

where F is an arbitrary and unknown function of its argument. From this, Darcy’s velocity can be 

written, in a more general way, as 

v =
ୢమ


ቀ

∆୮

୐
ቁ Fଷ ቀ

୮

୴మቁ,          or   v =
ୢమ


ቀ

∆୮

୐
ቁ Fଶ

୴ୢమ

୐
      (III-25)  

The limit cases of this results are: 

(i) Negligible inertial effects if compared to viscous and pressure effects. This removes ρ 

from the list of variables, leading to the already reached solution, Equation (III-22), or 

v  
ୢమ


ቀ
୮

୐
ቁ  (negligible inertial effects, Darcy’s law)      (III-26a) 
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(ii) Negligible viscous effects if compared to inertial and pressure effects. This hypothesis 

removes μ from the list and gives the solution ୮୰ୣି୧୬ୣ =
(୮)

୴మ   1 or  

vଶ  
୐


ቀ
୮

୐
ቁ  (negligible viscous effects, Forchheimer’s law)   (III-26b) 

(iii) Negligible effects of pressure force if compared to inertial and viscous ones. It is a type 

of problem of a different nature associated to the existence of a limit layer that should 

not be commented here since pressure forces are determinant in the problems of flow 

through porous media.  

Combining the two solutions of the simplified cases, v  
ୢమ


ቀ

∆୮

୐
ቁ and vଶ  

୐


ቀ

∆୮

୐
ቁ, it would be 

reasonable to think of a general solution of the form 

ቀ
∆୮

୐
ቁ = cଵ


ୢమ v + cଶ


୐

vଶ          (III-27) 

where c1 and c2 are dimensional constants which depend on the physical properties of the fluid 

and the geometrical characteristics of the porous media. These constants determine the relative 

influence among the pressure, viscous and inertial effects in the problems. Many authors have 

proposed an almost identical solution, ቀ∆୮

୐
ቁ = cଵ


ୢమ v + cଶ


ୢ

vଶ, since d and L are of the same 

order of magnitude in those porous media with regular grains (at this point it is important to 

remember that Åberg [1992 b] introduced different size grains for viscous and inertial 

resistance). Expressing it in terms of Re and , it is an equivalent equation to Rୣ = cସ + cହRୣ, 

where c4 and c5 are dimensional constants.  

Those media with non-regular grains or whose grains are spatially orientated (leading this to 

spatially orientated voids too) present clearly different values for d and L. If supposing a media 

of flat grains with narrow and long ducts (low tortuosity, Figure 3.1.a, L>>d), fluid particles 

almost do not change direction, so inertial forces can be negligible compared to viscous one, 

which are high due to the large contact surface between the fluid and the grain surfaces. In this 

type of media, the most important term in Equation (III-27) is the first one, so ቀ∆୮

୐
ቁ = cଵ


ୢమ v. 

Nevertheless, in a medium as the one in Figure 3.1.b, particles frequently change direction, so 

inertial effects are high, comparing to the previous medium. If these effects are of a higher order 

of magnitude than that of viscous effects, Equation (III-27) is simplified to ቀ∆୮

୐
ቁ = cଶ


୐

vଶ.  
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Figure 3.1. Porous media. a) flat long particles in the flow direction. b) flat long particles in random directions 

To finish this section, interpreting the dimensionless groups (III-23 a to c) in terms of force 

balance, it is important to highlight that Muskat did not consider Reynolds number in porous 

media (Re= ୴ୢ


) as a ratio of inertial and viscous forces, which is coherent with the conclusions 

of this section. If he had done so, he would not have been able to justify that, for negligible 

inertial forces (0<Rୣ<4), the value of Re could be of value unity, or slightly higher.  

 

III.4 Approach to the dimensional character of permeability 

In its original form, v =  ୦

୐
 or v = C୭

୮

୶
, constants κ or Co cluster the influence of the fluid and 

the porous medium, which is the reason why its dimensions cannot be related to a certain 

property. For this, Muskat went back to the dimensional considerations and commented that 

one should start from Equation (III-13), separating the influence of the fluid (μ) from the 

influence of the porous medium, which is summarized in a characteristic length d (grain effective 

diameter) and a constant C1 (which involves the rest of the properties). Therefore, Darcy’s law 

can be rewritten as v = Cଵ ቀ
ୢమ


ቁ ቀ

ௗ୮

ௗ୶
ቁ. Numerous experiments -from those carried out by Slichter 

[1899] with uniform ensembled spheres applying Poiseuille’s law to the extensive ones 

developed by Fancher et al. [1933] to plot the typical charts of friction factor versus Reynolds 

number- have tried to directly determine constants Co and C1, stating that they depend on the 

squared value of certain average grain size. This corroborates the role of d in the law and its 

meaning.  

It should be noted that with both classical dimensional analysis (where [୮

୶
]=MLିଶTିଶ, [d]=L, 

[v]=LTିଵ and []=MLିଵTିଵ) and discriminated dimensional analysis (where [୮

୶
]=ML୴୧ୱ

ିଵ L୬
ିଵTିଶ, 

[d]=L୬, [v]=LTିଵ, and []=MS୴୧ୱ
ିଵL୬Tିଵ), constant C1 is dimensionless despite clustering the 

complex properties of the porous media not associated to the grain size. This could be the 
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reason of its broad range values. However, focusing on the discriminated analysis as a more 

accurate dimensionless technique, and admitting that properties such as tortuosity or angularity 

are linked to aspect ratios (for instance, L୬/L୴୧ୱ), different conclusions can be reached:  

i) all the properties involved in C1 are conjugated in such a way that the constant is 

dimensionless; 

ii) one of the dimensional equations is not correct, and the only possibility is the 

dimensional equation of d; 

iii) the whole approach is incorrect. 

In the light of the lack of coherent results necessary for presenting present some validity and 

generality for Equation (III-13), Muskat thought it was reasonable to cluster factors C1 and d2 in 

a single parameter (permeability, k) which involves the dynamic behaviour of the porous media 

as carrier of the viscous fluid, k = Cଵdଶ. According to dimensional characterization, and 

following its classical technique, he gave k the dimensional equation L2.  

To finish this study, Taylor’s contributions based on the classical dimensional analysis must be 

presented since he is the only author, together with Muskat, who researched in this field. In his 

analysis, Taylor stablished the following steps:  

i) the study of flow through circular ducts (Poiseuille’s law), 

ii) the extension of the study to flow through ducts of sections with different sizes,  

iii) the introduction of the concept of hydraulic radius, 

iv) the effect of sinuosity of the path, and 

v) the deduction of the permeability as function of the typical grain size, viscosity, fluid 

density and a factor that depends on the void ratio e  

If the discrimination is included in Taylor’s proposal, so Lvis has the direction of the perimeter of 

the duct cross section, the dimensions of the relevant variables are  

[p]=ML୴୧ୱ
ିଵ L୬

ିଵTିଶ         (III-28) 

[R] = L୬ (duct raduis)          (III-29) 

[vaverage] = LTିଵ         (III-30) 

[]= MS୴୧ୱ
ିଵL୬Tିଵ          (III-31) 

Comparing both laws, Poiseuille’s and Darcy’s, 𝐯ୟ୴ୣ୰ୟ୥ୣ
ୖమ


(p) and vୟ୴ୣ୰ୟ୥ୣ = ቀ

୩


ቁ (p), 

respectively, it can be concluded that [k] = L୬
ଶ . This result is the same as the one obtained by 
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Muskat. Assuming ducts of different sizes would only imply that an average value of the 

hydraulic radius that would not vary the dimensional equation of k.  

Admittedly, insisting on discrimination, the previous result ([k] = L୬
ଶ , whose physical meaning is 

not direct) could be conveniently separated in the product of the pore section (L୴୧ୱL୬) and a 

shape factor of this section ( ୐౤

୐౬౟౩
). This allows justifying the inclusion of at least one aspect ratio 

in the dependence of k. However, Taylor’s definition of tortuosity is simply associated to a higher 

pressure drop per unit of particle longitudinal advance, so it is a direct and dimensionless 

coefficient which correct the velocity expression. All in all, Taylor admitted that ‘possibly, there 

are other factors related to the effects of the pore section shape and ‘other constants’, which 

should be considered to extrapolate solutions of the capillary straight ducts that are employed 

in the real model of the porous media’.  

To sum up, Muskat (and his application of Pi theorem), Taylor (and his theory of circular ducts) 

and the discriminated dimensional analysis conclude that k dimension is [k] = L୬
ଶ  and this 

coefficient clusters all the influence of the porous media. According to the relationship (even if 

partial) between this dimension and the squared of the average size of the grain, it seems to 

justify the proposed expressions in the scientific literature for determining the permeability 

from the grain size distribution.  

Paradoxically, the historical approach to the dimensional character of permeability that has 

been presented previously in this section leads to mistaken conclusion when applying them to 

the search of dimensionless groups that characterize the anisotropic media. Indeed, if the 

problem is simplified to a 2-D medium, [k୶] = L୷
ଶ  and [k୷] = L୶

ଶ , so [୩౮

୩౯
] = 

୐౯
మ

୐౮
మ. With this, the 

dimensionless group would be ୩౮

୩౯

୪౮
∗మ

୪౯
∗మ, where l୶

∗  and l୷
∗  are arbitrary geometrical quantities which 

define the problem in the indicated direction. As shown later in this chapter, the dimensional 

group that characterizes the problem is not ୩౮

୩౯

୪౮
∗మ

୪౯
∗మ, but ୩౮

୩౯

୪౯
∗మ

୪౮
∗మ. Perhaps, the problem is that two 

empirical laws (Newton’s for viscosity and Darcy’s) have been combined in the same 

dimensional analysis employing an inadequate basis.  
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III.5 Introduction of the fluid energetic potential in the dimensional basis 

In this section, an alternative and direct procedure is proposed. This new way does not lead to 

accurate dimensions for permeability but gives remarkable results to find the dimensionless 

groups which rule the problems of flow through porous media. Moreover, the results obtained 

in the previous section are critically argued. Discrimination technique, in its wider and more 

general conception (Madrid & Alhama [2005]), allows introducing the dimension of the variable 

‘energetic potential of the fluid’ (p or h) in the dimensional basis. This variable is responsible of 

the flow through porous media, and its dimension replaces the mass, since the inertial effects 

can be considered as negligible. Naming the potential dimension , the basis becomes 

{,Lx,Ly,Lz,T}, so Darcy’s law, in the forms vୟ୴ୣ୰ୟ୥ୣ = ቀ
୩


ቁ (p) or vୟ୴ୣ୰ୟ୥ୣ = C୭(p), allows 

assigning dimensional equations to ቀ୩


ቁ or Co, ቂ୩


ቃ = [C୭]  = LଶTିଵିଵ  

 

III.5.1 Emergence of the group 𝐤𝐱

𝐤𝐲

𝐥𝐲
∗𝟐

𝐥𝐱
∗𝟐 in anisotropic media 

According to the beginning of the section, ቀ୩


ቁ and C୭ components in x and y directions are: 

ቂ
୩


ቃ

୶
= ൤

୩౮

౮

൨ = [C୭]୶  =
୐౮

మ୘షభ


          (III-32) 

ቂ
୩


ቃ

୷
= ൤

୩౯

౯

൨ = [C୭]୷ =
୐౯

మ୘షభ


         (III-33) 

which allows writing ൤୩౮

౮

൨ ൤
୩౯

౯

൨ ൘ =
୐౮

మ

୐౯
మ, an essential result, as it implies that dimensionless groups 

can be obtained combining the ratio ൤୩౮

౮

൨ ൤
୩౯

౯

൨൘  with ratios of lengths of the problem 
୩౮౯

୩౯౮

 
୪౯
∗మ

୪౮
∗మ. 

Numerically, 
୶

= 
୷

, so the groups can be simplified to  

 =
୩౮

୪౮
∗మ

୪౯
∗మ

୩౯
.          (III-34) 

An alternative manner to obtain this group is to deduce it from the steady governing equation 

that rules the movement of fluid through anisotropic porous media. This Laplace type equation 

(୩౮

౮

பమ୮

ப୶మ +
୩౯

౯

பమ୮

ப୷మ = 0), result of combining Darcy’s law and continuity equation, must be turned 

into dimensionless, obtaining 

൤
୩౮౯

୩౯౮

୪౯
∗మ

୪౮
∗మ൨

பమ୮ᇲ

ப୶ᇲమ +
பమ୮ᇲ

ப୷ᇲమ = 0         (III-35) 
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Dimensionless variables p’, x’ and y’ are calculated as   

pᇱ =
୮

୮౥
, xᇱ =

୶

୪౮
∗ , yᇱ =

୷

୪౯
∗         (III-36) 

where p୭, l୶
∗  y l୷

∗  the chosen references to define them. The only dimensionless group that 

rules the solution of this equation (apart from aspect factors) is the coefficient multiplying ப
మ୮ᇲ

ப୶ᇲమ, 

this is  =  
୩౮౯

୩౯౮

୪౯
∗మ

୪౮
∗మ, since the differential average terms can be considered as unity.  

This expression degenerates again in the Equation (III-34) by deleting the viscosity. Therefore, 

either employing Darcy’s law and the correct discrimination or the dimensionless governing 

equation, the same governing group for anisotropic soils is obtained, a corrected permeability 

ratio. Although there is no possible manner to know the concrete dimensions of k, those of the 

ratio ൤୩౮

౮

൨ ൤
୩౯

౯

൨൘  are achieved.  

 

III.5.2 Energetic potential h. Physical meaning of the constants 

Variables h and p are related by Bernoulli’s expression, neglecting the velocity term, h =
୮

୥
z, 

with + sign for z increasing upwards, and – downwards. In this way, Muskat’s expression 

becomes Darcy’s original, v = −
୩୥


ቀ

ௗ୦

ௗ୶
ቁ = − ௗ୦

ௗ୶
. Previously in this chapter, according to 

classical dimensional analysis, the hydraulic gradient ௗ୦

ௗ୶
 is a dimensionless variable, which means 

that hydraulic conductivity dimensions are those of a velocity, []=LT-1. This approach makes 

impossible to deduce the sought dimensionless group. Nevertheless, introducing the 

dimensions of the energetic potential associated to h in the dimensional basis, and following the 

steps presented in Section III.5.1, the correct solution is again reached. Table 3.1 collects the 

physical meaning and dimensional equations of the constants involved in the water flow through 

porous media for different dimensional basis according to the energetic potential chosen. ,  

and  are dimensions of the total energetic potentials per unit of specific weight, per unit of 

mass or per unit of volume, respectively.  
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Table 3. 1. Dimensional equation and physical meaning of the constants involved in Darcy’s law 

Parameter 
Energetic 

potential 
Discriminated basis 

Dimensional 

equation 
Physical meaning 

 =
kg 


=

v

dh
dx

 h {L, L୴୧ୱ, L୬, T, } []= Lଶ T-1-1 

velocity that causes a unit 

gradient of the energetic 

potential h 

k


=

g

=
v

d(gh)
dx

 g·h {L, L୴୧ୱ, L୬, T, } [୩


]= Lଶ T-1-1 

velocity that causes a unit 

gradient of energetic potential 

g·h 

k


=

κ

g
=

v

d(gh)
dx

 ρ·g·h {L, L୴୧ୱ, L୬, T, } [୩


]= Lଶ T-1-1 

velocity that causes a unit 

gradient of energetic potential 

ρ·g·h 

In order to simplify the nomenclature in the following chapters, the parameter to be employed 

to obtain the dimensionless groups as well as carry out the numerical simulation is κ, the 

hydraulic permeability. Moreover, instead of using the symbol  for the dimension of h, we use 

the symbol Lwc, length of the water column. For 2-D rectangular scenarios, the dimensional 

equations and, therefore, units are the following: 

[κ୶] = L୶
ଶTିଵL୵ୡ

ିଵ =
୫౮

మ

ୱ·୫౭ౙ
         (III-37) 

ൣκ୷൧ = L୷
ଶTିଵL୵ୡ

ିଵ =
୫౯

మ

ୱ·୫౭ౙ
         (III-38) 

These are the hydraulic conductivity components and dimensions that are going to be used in 

problems of flow under dams studied in the following chapters. If, instead of 2-D rectangular 

coordinates, the scenario can be simplified as axisymmetric, with coordinates radial (r) and 

vertical (z), conductivity presents the following dimensions and units: 

[κ୰] = L୰
ଶTିଵL୵ୡ

ିଵ =
୫౨

మ

ୱ·୫౭ౙ
         (III-39) 

[κ୸] = L୸
ଶTିଵL୵ୡ

ିଵ =
୫౰

మ

ୱ·୫౭ౙ
         (III-40) 

When simulating and obtaining the universal curves for the problems of water flow in 

unconfined aquifers due to pumping wells, those are the hydraulic conductivity components 

that are going to be used in the following chapters.  
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III.6 Final comments 

The initial objective was the search of a dimensional equation for permeability (k) that allowed 

obtaining the accurate dimensionless groups which govern the solution of problems of flow 

through porous media (particularly in anisotropic scenarios), although, along the chapter, this 

aim has varied and divided into two.  

The first contribution was an attempt to deduce an accurate dimensional equation for 

permeability. In order to achieve this, the Pi theorem has been applied, together with the 

discrimination technique, to study Darcy’s and Forchheimer’s laws. This work had already been 

carried out by Muskat, and to a lesser extent by Taylor, for isotropic soils. The two authors do 

not employ spatial discrimination, and only focus on isotropic soils. Their research, as well as the 

one developed along this chapter, conclude a dimensional equation for permeability, whether 

isotropic or anisotropic media is considered. However, when this dimensional equation is used 

to obtain the emerging discriminated dimensionless group that rules the problem of flow 

through porous media, this monomial, which can be considered as a ratio of permeabilities 

corrected by an aspect factor, does not behave as so.  

All the troublesome process that has been presented in this chapter shows the difficulty to 

achieve the correct dimensional equation. This is due to the complexity of the physical 

mechanism that is involved in this parameter: grain size, porosity, connectivity, tortuosity…).  

According to all this, it can be deduced that combining two empirical laws, in this case Newton’s 

for viscosity and Darcy’s for flow through soils, is not a correct approach for the analysis of the 

dimensional character of permeability. Instead, a complex dimensional basis must be chosen in 

order to adjust to the problem, as the classical basis {M,L,T}, whether discriminated or not, 

probably cannot be applied directly when mixing two mechanical constitutive laws.  

In order to achieve the second contribution, the problem has been approached again, but in this 

case, with a spatial discriminated dimensional basis that also involved the dimension of a new 

quantity: energetic potential of the fluid, which appears due to the pressure difference. The 

dimensional equation for permeability cannot be found with this new dimensional basis, but 

that of ratio permeability/viscosity is obtained. With this information, an accurate dimensionless 

group is deduced. The new monomial is a permeability ratio corrected by an aspect factor too, 

but this time the aspect ratio is the inverse of that of the first approach. The correct group can 

also be derived from the dimensionless form of the governing equation, and it behaves as a 

monomial that rules the problem.  
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In the following chapters of this thesis, the monomial obtained through the previous sections is 

employed, together with the different aspect ratios involving the contours of the domain led to 

the universal curves to solve problems of flow through porous media. In this case, the studied 

scenarios are flow under dams and flow in unconfined aquifers due to pumping wells. Moreover, 

the permeability, or more specifically the conductivity ratio, is proved to control these scenarios 

by verifying that the dimensionless results are the same when the monomial is kept constant 

although that parameters involved vary their values. This aspect is of importance and justifies 

the analysis made in Chapter III .  

On the other hand, with the second contribution, the problem has been approached with a 

geometrically discriminated dimensional basis that specifically contains the dimension of the 

quantity ‘energetic potential of the fluid’. In this basis, although the dimensional equation for 

permeability is not found, the one for the ratio permeability/viscosity is obtained. This result 

allows deducing an accurate and new dimensionless group in these problems from which 

viscosity can be deleted due to its isotropic character, also giving rise to a permeability ratio 

corrected by the squared value of the domain aspect factor. This aspect factor is the inverse of 

the one obtained with the first approximation. The new group, which is also derived from the 

dimensionless form of the governing equation, does behave like a monomial that rules the 

problem. 

  



Chapter IV. Nondimensionalization technique: discriminated characterization of scenarios of flow 
through porous media 

85 
 

 

 

Chapter IV. Nondimensionalization technique: 

discriminated characterization of scenarios of flow 

through porous media 

 

 

After introducing the classical dimensional treatment that former authors give (from long ago) 

to the scenarios presented in this thesis and explaining its drawbacks, the application of the 

discriminated treatment in the deduction of the governing groups in problems of flow under 

gravity dams without a sheet pile, flow under gravity dams with a sheet pile, flow under gravity 

dams in infinite media and flow in unconfined aquifers due to a pumping well is shown in this 

chapter. For the first three types of scenarios, the problem is considered in rectangular 2-D 

coordinates, while the last is studied as an axisymmetric problem, employing radial coordinates. 

For these problems, universal abaci for the global and instantaneous and local unknowns of 

interest are obtained. To do this, a numerical model based on the network simulation method 

has been employed (described in Chapter V).  

The universal representation of the principal unknowns of a problem as functions of the 

variables of the scenario is the main objective when applying the discriminated 

nondimensionalization technique. For this, we must reduce the number of groups governing the 

problem, in order to simplify its use by future researchers and/or engineers. Nevertheless, the 

geometrical parameters involved in real scenarios are many and this makes their simplification 

intractable. According to this, the scenarios presented in this chapter are rather ideal problems 
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in which the number of groups governing the solution is three. For each unknown, its 

representation as a universal curve or abaci depends on the number of dimensionless groups. 

Section IV.2.1 presents the universal curves for the following variables of flow under gravity 

dams without sheet pile: groundwater flow, pore pressure under the dam (which can be 

summarized as uplift force due to the pressure under the dam and its application point) and 

average exit gradient. Section IV.2.2 shows the universal curves for scenarios of flow under 

gravity dams with a sheet pile: groundwater flow, pore pressure under the dam (summarized as 

uplift force due to the pressure under the dam and its application point), force on the sheet pile 

on the upstream side and on the downstream side, application point of these forces on the 

upstream and the downstream side and the average exit gradient. Section IV.2.3. is a study of 

the limit groundwater flow and the characteristic lengths in infinite scenarios (considering 

anisotropy). Finally, Section IV.2.4 presents the universal abaci the variables of interest in 

problems of flow in unconfined aquifers due to a pumping well: groundwater flow, seepage 

surface and influence radius.  

 

IV.1 Revision of the dimensionless study of flow through porous media  

Several authors (Harr [2012], Muskat [1937]) have presented universal solutions for problems 

of flow through porous media, especially scenarios with gravity dams. These abaci employ 

‘dimensionless’ groups, derived from classical dimensionless reasoning, in order to summarize 

many possible scenarios in a few curves. Their groups, which are commonly ratios between a 

horizontal and a vertical length, for example dam width and stratum thickness (wd/H in our 

nomenclature), have led to correct results when considering isotropic problems, where the 

vertical and the horizontal hydraulic conductivities present the same value. However, when 

trying to apply their results to anisotropic scenarios where the hydraulic conductivity varies in 

each direction with ratio frequently of the order of magnitude unity or more (Beckwith et al. 

[2003 a]), their curves are not accurate enough and correct results cannot be obtained. The 

reason why it occurs is that spatial discrimination is not considered. When so, this technique 

lead to a new group: ‘the product of a permeability (or hydraulic conductivity) and an aspect 

ratio’, the last being the group traditionally used. According to this, if an isotropic soil is studied, 

the group would degenerate to the aspect ratio, wd/H, which clearly explains why the traditional 

group works correctly in isotropic scenarios. The application of the discriminated dimensionless 

technique follows the steps presented at the end of Section II.3.  
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IV.2. Characterization of scenarios of flow through porous media  

IV.2.1 Flow under gravity dams without sheet pile. Universal curves 

IV.2.1.1 Mathematical model  

The governing equation of the flow is a Laplace-type expression. It can be obtained by the 

combination of the momentum and continuity equations. Darcy’s law relates the velocity of the 

groundwater flow to the change in the potential head and is written as Equation (IV-1) for 2-D 

rectangular media. On the other hand, the continuity equation, assuming a steady-state 

scenario with no sources and sinks, can be represented as Equation (IV-2). 

𝐯 = −κ𝛁h      or     v୶ = −κ୶
ப୦

ப୶
    and    v୷ = −κ୷

ப୦

ப୷
     (IV-1) 

𝛁 × 𝐯 = 0      or       ப୴౮

ப୶
+

ப୴౯

ப୷
= 0       (IV-2) 

The Laplace equation is then obtained introducing Equation (IV-1) in Equation (IV-2), leading to 

the governing equation in anisotropic soils (Equation (IV-3)).  

κ୶
பమ୦

ப୶మ + κ୷
பమ୦

ப୷మ = 0          (IV-3) 

For an isotropic soil (κx=κy=κ) Equation (IV-3) is simplified to 

பమ୦

ப୶మ +
பమ୦

ப୷మ = 0.  

The boundary conditions of the scenario are now presented to complete the mathematical 

model. In this scenario, only first and second-class conditions are employed. First class condition 

(also known as Diritlech condition) is presented in Equation (IV-4) and reflects a constant value 

of water potential in a given boundary. Second class (homogeneous) condition, or Neumann 

condition, is applied in impervious borders (Equation (IV-5)). These equations, when second 

class condition is homogeneous, are written as  

h = h୭,୰    at boundary regions 1,2…r (first class)    (IV-4) 

ப𝐯

ப୬
ቚ

ୱ
= 0    at boundary regions 1,2…s (second class)    (IV-5) 

where n is the direction perpendicular to the impermeable boundary.  

As commented in Chapter II, these kind of flow problems can also be studied employing the 

stream function variable, Ψ. Relations between stream function and velocity components are 

given by Equation (IV-6).  
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v୶ =
பஏ

ப୷
= −κ୶

ப୦

ப୶
 , v୷ = −

பஏ

ப୶
= −κ୷

ப୦

ப୷
        (IV-6)  

In this way, because 
డమ௛

డ௫డ௬
=

డమ௛

డ௬డ௫
, a new Laplace-type expression for anisotropic soils can be 

expressed as a function of this variable, Equation (IV-7),  

ଵ

ச౯

பమஏ

ப୶మ +
ଵ

ச౮

பమஏ

ப୷మ = 0          (IV-7) 

If Equation (IV-7) is multiplied by the factor κ୶κ୷, it is reduced to   

κ୶
பమஏ

ப୶మ + κ୷
பమஏ

ப୷మ = 0  

This is an expression quite like Equation (IV-3). When modelling isotropic soils, Equation (IV-7) 

is simplified to 
డమఅ

డ௫మ +
డమఅ

డ௬మ = 0. Moreover, boundary conditions can be translated to these 

variables. Due to the relation Ψ-h (Equation (IV-6)), the physical meaning of these new 

conditions changes. Diritlech condition, Equation (IV-8), reflects a constant value of flow along 

the boundary while Neumann homogenous condition, Equation (IV-9), applies to boundary 

where the value of the flow crossing it does not vary.  

Ψ = Ψ୭,୮    at boundary regions 1,2…p (first class)    (IV-8) 

பஏ

ப୬
ቚ

୯
= 0    at boundary regions 1,2…q (second class)    (IV-9) 

Clearly, Equations (IV-8) and (IV-9) are related to Equations (IV-4) and (IV-5) because the stream 

function values can be easily obtained by numerical integration of Equation (IV-6), as 

commented in Chapter II. The nomenclature of the scenario is presented in Figure 4.1, while the 

boundary conditions can be seen in Figure 4.2.  

 
Figure 4.1. Nomenclature of the studied problem 
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Figure 4.2. Boundary conditions of the studied problem 

 

IV.2.1.2 Dimensionless governing equation and discriminated monomials 

According to Figure 4.1 and choosing the following references for this scenario: 

H: stratum thickness 
wd: dam width  
Δh: water potential variation,  

the dimensionless variables are  

xᇱ =
୶

୵ౚ
, yᇱ =

୷

ୌ
, hᇱ =

୦

∆୦
         (IV-10) 

and the dimensionless governing equation turns to be 

ச౮

୵ౚ
మ

பమ୦ᇱ

ப୶ మ +
ச౯

ୌమ

பమ୦ᇱ

ப୷ᇱమ = 0          (IV-11) 

From Equation (IV-11) it can be deduced that the reference value Δh is not involved in the 

solution of h (x,y). Moreover, if the derivative factors ப
మ୦’

ப୶’మ
 and ப

మ୦’

ப୷’మ
 are of an order of magnitude 

unity due to the ranges chosen for the dimensionless variables h’, x’ and y’, the coefficients ச౮

୵ౚ
మ 

and 
ச౯

ୌమ must be the same order of magnitude and the only dimensionless group that can be 

obtained from the governing equation  

πଵ =
ச౮ୌమ

ச౯୵ౚ
మ ,           (IV-12) 
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has a value close to unity. Referring to the physical meaning of this coefficient and considering 

that the dimensions of the numerator and denominator are the inverse of time [T-1], it is 

interesting to write π1 as 
(ଵ/఑೤௪೏

మ)

(ଵ/఑ೣுమ)
. With this, the ratio can be interpreted as the quotient of the 

time a fluid takes to run a distance wd in a medium of conductivity κy and the time the same fluid 

takes to run a distance H in a medium of conductivity κx. It is an interpretation which involves, 

for the same fluid, physical and geometrical properties in such a way that a value of π1 higher 

than one does not necessary imply that the horizontal hydraulic conductivity is higher than the 

vertical conductivity, and vice versa. In any case, π1 is the most relevant data group of these 

scenarios, considering ‘data’ groups those in which unknowns do not appear. 

Note that this group was deduced in Chapter III by other dimensional reasoning. As presented 

in that chapter, monomial π1 can be obtained thank to dimensional equation that is given to the 

anisotropic parameters permeability (k) or hydraulic conductivity (κ), in which the employed 

potential variable is given its own dimensions (in this case, [h]=Lwc). This dimensional equation 

is also used when deducing the dimensionless form of some of the unknown variables.  

Nevertheless, other monomials rule these scenarios, which are connected to the geometry of 

the problem. In the case of a dam with or without foundation, the geometrical parameters are 

(see Figure 4.1): 

a: upstream horizontal length of the medium,  
b: downstream horizontal length of the medium,  
d: depth of the dam foundation (when there is no foundation, it takes a value of zero).  

The parameters wd and H are also involved in the new dimensionless groups, which are: 

πଶ =
ୢ

ୌ
            (IV-13) 

πଷ =
ୟ

୵ౚ
           (IV-14) 

πସ =
ୟ

ୠ
            (IV-15) 

These groups can also be interpreted physically. π2 expresses the importance of the depth of the 

foundations in front of the total depth of the scenario, a ratio that determines the aspect of the 

flow patterns for both head potential and stream function variables. If π2 takes a value of 0, then 

the dam does not have foundation and this group is deleted. π3 or its reverse, ୵ౚ

ୟ
, reflects the 

relevance of the region under dam (with impervious vertical boundaries) in relation with the 

upstream region with permeable upper boundary. Finally, π4 determines the flow net 

asymmetry of the upstream and downstream regions. 
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Referring now to the global unknown dimensionless groups, let us begin with the groundwater 

flow, perhaps the unknown of most interest in porous media, in either dam or well scenarios. 

Groundwater flow in 2-D domains presents the following dimensional equation  

Q =
[୐౮]ൣ୐౯൧[୐౰]

[୘][୐౰]
=

[୐౮]ൣ୐౯൧

[୘]
         (IV-16) 

Revising reference manuals, as Muskat [1937], several solutions for isotropic media presents 

dimensionless values of Q. In order to obtain it, the value is divided by the product of the water 

potential and the hydraulic conductivity. That is 

Q୬୭୬ୢ୧୫ =
୕

∆୦ச
           (IV-17) 

If a classical dimensional analysis is carried out and a former point of view of the dimension of h 

and κ, Qnondim seems to have null dimensional equation. Nevertheless, once the discriminated 

nondimensional technique is applied and anisotropic media are considered (even in the values 

of κx and κy are the same), different conclusions are derived. Let us arrive to these conclusions 

employing the horizontal velocity from Darcy equation.  

The average horizontal flow can be written Q୰ୣ୤ = v୶S୶, where vx is the horizontal velocity and 

Sx is the cross-section under the dam. Now, substituting vx with Equation (IV-2) and S୶ = L୷L୸, 

the reference flow turns into Q୰ୣ୤ = −κ୶
ப୦

ப୶
L୷L୸. In this point, the variables can be replaced 

with parameters of the scenario providing that Q୰ୣ୤ = −κ୶
∆୦

୵ౚ
H, because this is a 2-D problem 

(Lz=1). According to Equation (IV-12), ୌ

୵ౚ
~ට

ச౯

ச౮
, the final equation for Qref can be written as  

Q୰ୣ୤ =  ඥκ୶κ୷∆h         (IV-18) 

This expression has been employed by different authors (Castany [1971], de Cazenove [1961]) 

when considering anisotropic soils, but they did not set a formal demonstration of its use. Then, 

the value of the dimensionless groundwater group is finally written as 

π୕ =
୕

ඥச౮ச౯∆୦
           (IV-19) 

Another interesting variable is the pore pressure under the dam, one of the destabilising actions 

that can influences the safety of the structure. This is a local quantity whose value varies along 

the length of the dam base. Figure 4.3 shows a scheme of the components that determine this 

variable. It consists on a rectangular area (I), which is positional due to the depth of the 

foundation (d) and/or the value of the water head downstream the dam, and an energetic one 
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(II) that depends on the water head change generated by the dam-soil set. This last area can be 

considered as triangular.  

 
Figure 4.3. Scheme of the components of the pore pressure 

Therefore, the dimensionless expression for the pore pressure variable is a manner to only study 

the energetic part.  

uୢ୧୫ୣ୬ୱ୧୭୬୪ୣୱୱ =
୳

∆୦ஓ౭
−

୦మାୢ

∆୦
=

౫

ಋ౭
ି(୦మାୢ)

∆୦
= π୳       (IV-20) 

Other variables of interest are the uplift pressure and its application point under de dam. The 

first is a global quantity resulting from the integration of the pore pressure right under the dam 

along its base width. Considering the energetic part (II), since area (I) only appears due to 

geometry and not because of the flow itself, the dimensionless form of this variable writes as  

UF୬୭୬ୢ୧୫ =
୙୊ିஓೢ୵ౚ(ୢା୦మ)

ஓೢ୵ౚ∆୦
= π୙୊        (IV-21) 

As regards the application point of the uplift force, the distance from this point to the dam heel 

is the ratio between the momentum due to the pore pressure (integrated along the width of the 

dam) and the uplift force. In order to obtain its dimensionless value, we must separately 

consider the application point of the rectangular area (Ci = 0.5·wd) and that of the almost 

triangular one (Cii between 0.33·wd and 0.5·wd). For the last, the dimensionless form is given by  

C୬୭୬ୢ୧୫ =

ౙ

౭ౚ
∗୙୊ି(ୢା୦మ)∗୵ౚ∗ஓ౭∗଴.ହ

୙୊ି(ୢା୦మ)∗୵ౚ∗ஓೢ
= πେ       (IV-22) 

Finally, we study the quantity ‘average exit gradient’, Ie,ave, which is also an important variable 

whose value is indicative to prevent piping and ensure the safety of the structure. Piping 

phenomenon appears in the flow exit zone and advances inside the medium It is explained by 

the iso potential lines concentration in the corners (speed increase) and soil mass decrease in 

favour of soil stability. This is the reason why the analysis is always carried out downstream the 

structure, next to it. There are standards, such as Eurocode-7 [2004], that propose methods to 

calculate exit gradients (I) only considering a zone of negligible thickness for its calculations (the 
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difference of water head between the highest and the lowest point of the dam foundation 

divided by this length). In this way, the only information contributing is that adjacent to the 

retaining structure.  

Harr also studied this phenomenon, presenting graphics and formulation for obtaining the value 

of the exit gradient at the surface point right downstream the retaining structure (ie), which 

means that, again, only information from the point right after the dam is used. Nevertheless, 

Harr also came up with a larger area, so more realistic calculations can be carried out, obtaining 

an average exit gradient, Ie,ave. The area Harr suggested was the buried length as its vertical 

length and half of the buried length as the horizonal length. This area, however, only works in 

isotropic soils. In this thesis, a different area is suggested: the vertical length would still be the 

buried length, and the horizontal length would be half of the vertical multiplied by an anisotropy 

ratio. Therefore, for problems of flow under dams without sheet piles, the vertical length, lv, 

would be the dam foundation, d, while the horizontal length lh, is ୪౬

ଶ ට
ச౮

ச౯
. The studied area is 

shown in Figure 4.4.  

 
Figure 4.4. Area for the calculation of the average exit gradient (Ie,ave) 

As any other gradient, the average exit gradient has been traditionally considered as 

dimensionless because it is the ratio of two lengths. However, considering discrimination it does 

have units, ൣIୣ,ୟ୴ୣ൧ =
୐౭ౙ

୐౯
. The discriminate dimensionless expression for this variable is then  

π୍ୣ,ୟ୴ୣ =
୍౛,౗౬౛·ୌ

∆୦
          (IV-23) 

In this way, summarizing and applying Pi theorem, unknown dimensionless groups are functions 

of these data monomial.  
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π୕ = f(πଵ, πଶ, πଷ, πସ)          (IV-24) 

π୙୊ = f(πଵ, πଶ, πଷ, πସ)          (IV-25) 

πେ = f(πଵ, πଶ, πଷ, πସ)          (IV-26) 

π୍ୣ,ୟ୴ୣ = f(πଵ, πଶ, πଷ, πସ)         (IV-27) 

The dimensionless pore pressure distribution is also function of the dimensionless position 

under the dam, xᇱ =
୶

୵ౚ
. 

π୳ = f(x′, πଵ, πଶ, πଷ, πସ)        (IV-28) 

 

IV.2.1.3 Universal abaci  

Along this section, abaci and formulation for the unknowns described in the former section are 

presented as function of the data monomials, πଵ, πଶ, πଷ and the dimensionless location x′. πସ 

has not been used because, after running a significance number of simulations, negligible 

relevance of this monomial was observed. In these abaci, the formulation is presented for each 

variable. The first curves presented in this section are those of groundwater flow (Figures 4.5 to 

4.8).  

 
Figure 4.5. Dimensionless groundwater flow for π3 = 1 
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Figure 4.6. Dimensionless groundwater flow for π3 = 2 

 
Figure 4.7. Dimensionless groundwater flow for π3 = 5 
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Figure 4.8. Dimensionless groundwater flow for π3 = 10 

According to Figures 4.5 to 4.8, the groundwater flow under the gravity dam increases with the 

value of π1, which makes sense because this group (as mentioned before) is a comparison of the 

ease of the water to flow through porous media horizontally and vertically in the domain. In this 

way, as the nature of the flow under the dam is basically horizontal, the higher π1, the easier it 

is for the flow to occur and the larger the value of the total flow is.  

However, some exceptions appear for dams with foundations, that is, π2>0. If focusing on πQ for 

high values of π1 (≥5) but low values of π3 (1 and 2), the horizontal flow grows and is restricted 

at the same time, so in Figure 4.5 curves for π1 = 5, 10 and 30 are below the curves corresponding 

to smaller values. Moreover, in Figure 4.6 the same occurs for π1 = 10 and 30. In Figures 4.7 and 

4.8, where the medium is horizontally large enough, the effect of π1 on πQ is the one expected. 

The monomial π2 is also highly decisive in the groundwater flow under the dam. This group 

presents the depth of the structure foundation, so as it increases, the importance of the vertical 

flow rises. This is the reason why, as the value of π2 increases, the dimensionless water flow 

does the opposite. The importance of π3 seems to be reduced for low values of π1, since for 

π1=0.03-1, curves πQ are basically the same for all π3 studied. This occurs because, since the 

importance of π1 is higher than that of π3, low values of π1 mean that the vertical flow grows, 

while large values of π3 have the opposite meaning. In this way, the effects are somehow 

compensated.  

Let us now show an example of how to use and obtain information from the previous abaci. The 

scenario to consider presents the following parameters: 
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wd = 20 m 
H = 20 m 
d = 5 m 
κx= 10-6 m/s 
κy = 10-6 m/s 
h1 = 10 m 
h2 = 0 m 
a = b  ∞. 

Following Equations (IV-12) to (IV-15), the values of the data monomials (π1, π2, π3 and π4) are: 

π1 =1 
π2 =0.25 
π3 >10 
π4 =1 

As π3 has a value larger than 10, the abacus to use is that in Figure 4.8. In order to obtain the 

dimensionless value of the groundwater flow variable, the π1 =1 curve is chosen (yellow curve) 

and from it, the value of π2 =0.25 is read from the horizontal axis. πQ has a value of 0.35, which, 

according to Equation (IV-19) leads to a dimensional result of the variable 3.5·10-6 m3/s/m. 

The following abaci are those for the pore pressure distribution. These are presented in order 

to understand the behaviour of the other variables related to this one: uplift force and its 

application point. For this, as curves for each value of πଵ are very close among them, less values 

of the monomial have been plotted. Moreover, because a new data monomial is needed for 

plotting the dimensionless value of the pore pressure distribution (x’), the only value of π3 that 

is presented is 10 (Figures 4.9 to 4.13). 

 
Figure 4.9. Dimensionless pore pressure distribution for π2 = 0 and π3 = 10 
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Figure 4.10. Dimensionless pore pressure distribution for π2 = 0.1 and π3 = 10 

 
Figure 4.11. Dimensionless pore pressure distribution for π2 = 0.25 and π3 = 10 
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Figure 4.12. Dimensionless pore pressure distribution for π2 = 0.5 and π3 = 10 

 
Figure 4.13. Dimensionless pore pressure distribution for π2 = 0.75 and π3 = 10 

From Figures 4.9 to 4.13, the shape of the dimensionless pore pressure distribution is always 

quasi triangular, as commented before in this chapter. This leads to a dimensionless uplift value 

of 0.5 for all combinations of π1, π2 and π3. This means that  

π୙୊ =
୊ି୵ౚஓ౭(୦మାୢ)

୵ౚஓ౭∆୦
= 0.5        (IV-29) 

In addition, these curves also help us to understand the behaviour of the other variable related 

to the pore pressure distribution: the application point of the uplift force, specifically the effect 
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of the little variation between the abaci for π2 = 0.5 and 0.75. Referring to the effect of π1 on πu, 

it is almost negligible when studying dams without a foundation (all curves are very close to each 

other). If we now focus on the dams with foundations, we can see that the higher the value of 

π1, the more different the curves are to those corresponding to a dam without a foundation.  

As the formulation for the dimensionless uplift forces has already been shown and explained, 

the next dimensionless variable presented is the dimensionless application point, πC. These abaci 

are depicted in Figures 4.14 to 4.17.  

 
Figure 4.14. Dimensionless application point of the uplift force for π3= 1 

 
Figure 4.15. Dimensionless application point of the uplift force for π3 = 2 
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Figure 4.16. Dimensionless application point of the uplift force for π3 = 5 

 
Figure 4.17. Dimensionless application point of the uplift force for π3 = 10 

Focusing on the effect of π1 on the value of πC, the higher the importance of the horizontal flow 

is, the bigger the value of the studied group. This happens because the increase of the horizontal 

flow means a decrease of the pore pressure in the upstream half of the dam base, occurring the 

opposite in the downstream side. In this way, the application point of the uplift force is shifted 

towards the geometrical centre of the dam base.  
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The monomial π2 also affects the dimensionless application point of the uplift force. The study 

of the dimensional form of this variable shows that it moves towards the dam centre as the 

foundation is deeper, since the rectangular area of the dimensional pore pressure function 

becomes larger. However, as we have seen in Figures 4.12 and 4.13, for (approximately) π2 >0.5, 

the shape of the energetic area of the distribution hardly changes, while the rectangular area is 

increased. This is the reason why the value of πC, which exclusively depends on the quasi-

triangular area, decreases at the end of all the curves. Group π3 affects πC depending on the 

value of π1. For the curves representing low values of π1, πC is hardly affected by π3, although for 

larger values of the permeability monomial, the increase of π3 leads to a decrease in πC.  

Finally, abaci related to the dimensionless form of the average exit gradient, Ie,ave, are shown in 

Figures 4.18 to 4.21. This variable is not presented for π2 = 0 because there is not buried length 

in which it can be calculated, so the curves begin in π2 = 0.1.  

Figure 4.18. Dimensionless average exit gradient for π3 = 1 
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Figure 4.19. Dimensionless average exit gradient for π3 = 2 

 
Figure 4.20. Dimensionless average exit gradient for π3 = 5 
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Figure 4.21. Dimensionless average exit gradient for π3 = 10 

When studying the effect of π1 on the variable πIe,ave, it appears to be very similar to that on πQ 

and πC, because the increase of the importance of the horizontal flow means a higher variation 

of the water head on the lateral of the dam foundation instead of under it.  

If we now focus on how π2 affects πIe,ave, the effect is also evident, since the increase of the 

length of the dam foundation leads to a decrease of the average exit gradient. It occurs because, 

although the variation of the water head increases with the buried length, this increase is lower 

than that of the length.  

The effect of π3 is not as evident as those of π1 and π2 because it is somehow related to these 

two monomials. If comparing Figures 4.18 and 4.19 (π3 = 1 and 2 respectively), they show that 

for π1 < 1, values of πIe,ave are lower for π3 = 1, until certain values of π2 (different for each π1) 

from which curves for π3 = 1 and 2 give almost the same values.  

The π1 = 1 curves for πIe,ave in Figures 4.18 and 4.19 behave in a similar way, although for a certain 

value of π2, instead of presenting the same values, they change their trend, and the values 

related to π3 = 1 are higher than those of π3 = 2. If π1 > 1, then the curve π3 = 2 is always lower 

than that of π3 = 1.  

Figures 4.20 and 4.21 show the curves for π3 = 5 and 10 respectively, with a different behaviour 

than that of Figures 4.18 and 4.19. Curves for low values of π1 (0.03-0.5) behave similarly than 

in the previous case: this is, the one of lower value of π3 (5 in this pair) shows lower values than 

that of π3 until a given value of π2; from this point the values are almost the same for π3 = 5 and 
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10. Curves for π1 =1-10 behave in the same way as those for π1 =1 in Figures 4.18 and 4.19, which 

means that the trend changes from a certain value of π2. Finally, curves for π1 = 30 in Figures 

4.20 and 4.21 do not behave as in Figures 4.18 and 4.19, because for all values of π2 (and, 

therefore, for all lengths of the dam foundations) πIe,ave values are higher for π3 = 5 than for π3 = 

10.  

 

IV.2.2 Flow under gravity dams with sheet pile. Universal curves 

IV.2.2.1 Mathematical model  

Adding a new structure under the gravity dam increases the complexity of the studied problem, 

since the sheet pile means two new boundary conditions (or three if the pile thickness is not 

considered as negligible). However, introducing the new part of the structure does not alter the 

governing equation, which is still the Laplace expression presented in Equation (IV-3) 

κ୶
பమ୦

ப୶మ + κ୷
பమ୦

ப୷మ = 0          (IV-3) 

Moreover, the boundary conditions can also be expressed in the same way as they were 

presented for the scenario of flow under dams without sheet piles (Equations (IV-4) and (IV-5)): 

h = h୭,୰    at boundary regions 1,2…r (first class)    (IV-4) 

ப𝐯

ப୬
ቚ

ୱ
= 0    at boundary regions 1,2…s (second class)    (IV-5) 

The Laplace expression employing the stream function variable does not change whether the 

dam scenario presents sheet piles or not, so Equation (IV-7) can also be used.  

ଵ

ச౯

பమஏ

ப୶మ +
ଵ

ச౮

பమஏ

ப୷మ = 0          (IV-7) 

Finally, the boundary conditions for the scenario employing the stream function variable are not 

affected by the presence of a sheet pile, so Equations (IV-8) and (IV-9) can also be used  

Ψ = Ψ୭,୮    at boundary regions 1,2…p (first class)    (IV-8) 

பஏ

ப୬
ቚ

୯
= 0    at boundary regions 1,2…q (second class)    (IV-9) 

In this way, the mathematical model for problems of flow under gravity dams with a sheet pile 

is completely presented. Figure 4.22 shows the nomenclature of the scenario, while Figure 4.23 

presents the boundary conditions of the problem. 
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Figure 4.22. Nomenclature of the studied problem 

 
Figure 4.23. Boundary conditions of the studied problem 
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IV.2.2.2 Dimensionless governing equation and discriminated monomials 

The first governing group of this kind of problem is the same as in the previous scenario, π1, 

Equation (IV-14).  

πଵ =
ச౮ୌమ

ச౯୵ౚ
మ           (IV-12) 

In addition, as presented in Figure 4.22, many of the geometric parameters in this scenario are 

also in the scenario of flow under dams without a sheet pile, as well as the boundary conditions 

(Figure 4.23). This means that monomials π2, π3 and π4 are the same as in Section IV.2.2, shown 

in Equations (IV-13), (IV-14) and (IV-15).  

πଶ =
ୢ

ୌ
            (IV-13) 

πଷ =
ୟ

୵ౚ
           (IV-14) 

πସ =
ୟ

ୠ
            (IV-15) 

The meaning of monomials π1, π2, π3 and π4 in this kind of scenarios is the same as in problems 

of flow under dams. Due to the sheet pile that now is placed under the dam base, two new 

monomials appear. These have two new parameters: 

ds: length of the sheet pile.  
cs: position of the sheet pile under the dam, measured from the dam heel.  

Along the thesis, the sheet pile thickness (ws) is assumed as negligible, so it is not involved in the 

modelling of the problem and, therefore, in the monomial definitions. Thus, the two new 

dimensionless groups governing the problems are   

πହ =
ୡ౩

୵ౚ
           (IV-30) 

π଺ =
ୢ౩

ୌ
           (IV-31) 

If, for some reason, the sheet pile thickness was not negligible, then an extra monomial would 

present a similar expression as presented in Equation (IV-32).  

π଻ =
୵౩

୵ౚ
           (IV-32) 

π5 is linked to π6 in the following way: if the last group presents a value of 0 (that is, there is a 

sheet pile of no length, so there is no sheet pile), then π5 must no appear, since it loses its 

meaning. Nevertheless, the opposite does not happen; presenting a value of π5 = 0 means that 

the sheet pile is located right at the heel of the dam (in the same way that a value of 1 means 
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that it has been placed at the toe of the structure). In a similar way, π2 and π6 are also connected, 

since both are related to the vertical direction of the scenario and, therefore, to the vertical 

water flow. If both values are defined as done in this thesis, where d and ds are divided by H, 

then Equation (IV-33) must be met: 

πଶ + π଺ =
ୢ

ୌ
+

ୢ౩

ୌ
< 1          (IV-33) 

Any other situation cannot be possible: if this addition is higher than one, it means that the 

vertical length of the whole retaining structure is larger than the stratum thickness, which, of 

course, is impossible; if this addition is exactly one, then there is an impervious contour along 

the whole stratum length, and no flow happens.  

If the sheet pile thickness was not negligible, then another verification should be done, as shown 

in Equation (IV-34).  

πହ + π଻ =
ୡ౩

୵ౚ
+

୵౩

୵ౚ
< 1         (IV-34) 

Considering now the six dimensionless groups, the scenario presented in Section IV.1.2 can also 

be modelled and studied, as long as π6 takes value 0 and, as explained previously, π5 loses its 

meaning.  

When a retaining structure is composed by a gravity dam and a sheet pile underneath it, new 

variables are studied apart from underground water flow, average exit gradient, uplift force and 

the application point of this force. The former monomials, however, are studied following the 

same expressions shown in Equations (IV-19), (IV-21), (IV-22) and (IV-23). Pore pressure 

distribution is only presented in this section in order to help to understand the data provided in 

abaci for uplift force and its application point.  

π୕ =
୕

ඥச౮ச౯∆୦
           (IV-19) 

UF୬୭୬ୢ୧୫ =
୙୊ିஓೢ୵ౚ(ୢା୦మ)

ஓೢ୵ౚ∆୦
= π୙୊        (IV-21) 

C୬୭୬ୢ୧୫ =

ౙ

౭ౚ
∗୙୊ି(ୢା୦మ)∗୵ౚ∗ஓ౭∗଴.ହ

୙୊ି(ୢା୦మ)∗୵ౚ∗ஓೢ
= πେ       (IV-22) 

π୍ୣ,ୟ୴ୣ =
୍౛,౗౬౛·ୌ

∆୦
          (IV-23) 

The new variables are related to the pore pressure, although in this case, it is the one applied 

on the sheet pile: upstream and downstream side forces and their application points. The 

application point is always measured from the contact point of the dam and the sheet pile.  
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In order to obtain both forces, an integration of the pore pressure right on the surface of the 

sheet pile must be carried out, as shown in Figure 4.24. As it happened when calculating the 

uplift force under the dam (t), the foundation depth and the water potential downstream the 

dam generate a ‘positional’ pressure with rectangular shape (constant term) applied on both 

sides of the pile (I). Moreover, since the vertical position along the length of the pile varies, 

another ‘positional’ pore pressure appears, and in this case the shape is a triangle (II) because 

the value increases with depth.  

Finally, the energetic part of the pore pressure is due to the hydraulic potential variation (III). Its 

shape is more arbitrary than the one of the energetic parts of the uplift force, although in some 

cases it can be considered an irregular triangle. 

 
Figure 4.24. Pore pressure distribution along the sheet pile 

Then, the procedure to obtain the dimensionless force due to the pore pressure is the same 

whether the upstream or the downstream side is being considered, Equation (IV-35).  

F୶ୗ౤౥౤ౚ౟ౣ
=

୊୭୰ୡୣ౮౏ିஓ౭∗ୢ౩∗(ୢା୦మ)ିஓ౭∗ୢ౩
మ/ଶ

ୢ౩∗∆୦∗ஓ౭
= π୊౮౏

      (IV-35) 

Then, for each side of the sheet pile we obtain Equation (IV-36) and Equation (IV-37) for the 

upstream and downstream sides, respectively.  

F୙ୗ౤౥౤ౚ౟ౣ
=

୊୭୰ୡୣ౑౏ିஓ౭∗ୢ౩∗(ୢା୦మ)ିஓ౭∗ୢ౩
మ/ଶ

ୢ౩∗∆୦∗ஓ౭
= π୊౑౏

      (IV-36) 

Fୈୗ౤౥౤ౚ౟ౣ
=

୊୭୰ୡୣీ౏ିஓ౭∗ୢ౩∗(ୢା୦మ)ିஓ౭∗ୢ౩
మ/ଶ

ୢ౩∗∆୦∗ஓ౭
= π୊ీ౏

      (IV-37) 

This decomposition of the pore pressure into smaller shapes is also necessary in order to 

calculate the dimensionless value of the application points upstream and downstream the sheet 

pile (Figure 4.24). In a similar way as for the uplift force, the application point of the rectangular 

part of the pore pressure (I) is found at 0.5ds (Ci), the one of the triangular part (II) is located at 

approximately 0.67ds (Cii). The energetic part (III) also has an application point (Ciii), whose 

dimensionless value is the unknown group to find.  
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As regards the force on the pile side, the formulation is the same to obtain this dimensionless 

group for both upstream and downstream the pileand is presented in Equation (IV-38).  

Cଡ଼ୗ౤౥౤ౚ౟ౣ
=

ౙ౔౏
ౚ౩

∗୊୭୰ୡୣ౔౏ି(ୢା୦మ)∗ୢ౩∗ஓ౭∗଴.ହି
ౚ౩

మ

మ
∗ஓ౭∗

మ

య

୊୭୰ୡୣ౔౏ିୢ౩∗(ୢା୦మ)∗ஓ౭ି
ౚ౩

మ

మ
∗ஓ౭

= πେ౔౏
     (IV-38) 

For each side of the sheet pile the expressions are Equation (IV-39) for the upstream side and 

Equation (IV-40) for the downstream side.  

C୙ୗ౤౥౤ౚ౟ౣ
=

ౙ౑౏
ౚ౩

∗୊୭୰ୡୣ౑౏ି(ୢା୦మ)∗ୢ౩∗ஓ౭∗଴.ହି
ౚ౩

మ

మ
∗ஓ౭∗

మ

య

୊୭୰ୡୣ౑౏ିୢ౩∗(ୢା୦మ)∗ஓ౭ି
ౚ౩

మ

మ
∗ஓ౭

= πେ౑౏
     (IV-39) 

Cୈୗ౤౥౤ౚ౟ౣ
=

ౙీ౏
ౚ౩

∗୊୭୰ୡୣీ౏ି(ୢା୦మ)∗ୢ౩∗ஓ౭∗଴.ହି
ౚ౩

మ

మ
∗ஓ౭∗

మ

య

୊୭୰ୡୣీ౏ିୢ౩∗(ୢା୦మ)∗ஓ౭ି
ౚ౩

మ

మ
∗ஓ౭

= πେీ౏
     (IV-40) 

These new unknown monomials, together with those presented previously for the case without 

a sheet pile, are functions of the data monomial.  

π୕ = f(πଵ, πଶ, πଷ, πସ, πହ, π଺)         (IV-41) 

π୙୊ = f(πଵ, πଶ, πଷ, πସ, πହ, π଺)         (IV-42) 

πେ = f(πଵ, πଶ, πଷ, πସ, πହ, π଺)         (IV-43) 

π୊౑౏
= f(πଵ, πଶ, πଷ, πସ, πହ, π଺)         (IV-44) 

π୊ీ౏
= f(πଵ, πଶ, πଷ, πସ, πହ, π଺)         (IV-45) 

πେ౑౏
= f(πଵ, πଶ, πଷ, πସ, πହ, π଺)         (IV-46) 

πେీ౏
= f(πଵ, πଶ, πଷ, πସ, πହ, π଺)         (IV-47) 

π୍ୣ,ୟ୴ୣ = f(πଵ, πଶ, πଷ, πସ, πହ, π଺)        (IV-48) 

 

IV.2.2.3 Universal abaci  

In order to simplify the abaci presented and explained along this section, some of the monomials 

are considered with a single value, so the effect of the more relevant ones can be observed. In 

this way, monomial π2 keeps a value of 0, so the effect of the dam foundation is not considered, 

monomial π3 is given a value of 20, so large scenarios are modelled, and monomial π4 is 1, since 

in large scenarios in the horizontal direction this group does not affect much.  
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The first unknown variable plotted is the dimensionless groundwater flow. For this, two abaci 

are shown, Figures 4.25 and 4.26. Figure 4.25 clusters the curves for π5 = 0 and 1, since this 

variable has the same values in symmetrical positions. Figure 4.26 presents the values for π5 = 

0.5.  

 
Figure 4.25. Dimensionless groundwater flow for π5 = 0 and 1 

 
Figure 4.26. Dimensionless groundwater flow for π5 = 0.5 

Once the simulations that were necessary for plotting the curves in Figure 4.25 had been carried 

out, it was observed that, as studied in the different references for isotropic soils such as Harr 

[2012] and Muskat [1937], the value of the water flow is the same when locating the sheet pile 

at the heel and the toe of the dam. This means that the flow behaves symmetrically respect to 

the middle point of the dam base. Since the nondimensionalization expression of the 
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groundwater flow does not consider the position of the sheet pile, the equal values of 

dimensional water flow lead to the same values of dimensionless water flow. This is the reason 

why both configurations, π5 = 0 and 1, have been plotted with the same curve for each value of 

π1. 

Moreover, if studying the position of the sheet pile, π5, comparing Figures 4.25 and 4.26, it can 

be observed that, when placing the sheet pile at an end of the dam base, the amount of water 

flow is lower than if it is placed in the centre (π5 = 0.5).The effect of monomial π1 is foreseeable: 

as π1 increases, πQ does too, as the higher the horizontal permeability, the larger the amount of 

water running from upstream to downstream, in the same way that happened for flow under 

dam without a sheet pile. If the variable is studied as function of the sheet pile length, π6, the 

effect is the same as Harr and Muskat presented in his works for isotropic soils: the 

dimensionless flow is lower as π6 increases. If anisotropy is studied, then the effect of π6 is more 

remarkable with π1. 

As regards the dimensionless uplift force, the solutions are presented in Figures 4.27 and 4.28 

for π5 = 0 and π5 = 1, respectively. For π5 = 0.5 it was observed that the dimensionless value of 

the uplift pressure takes the same value as if there was no sheet pile, that is, 0.5.  

 
Figure 4.27. Dimensionless uplift force for π5 = 0 

As it occurred for the curves for the dimensionless groundwater flow (Figure 4.25), there is a 

relation between the values of πUF when locating the sheet pile at the heel of the dam base 

(π5=0) and at the toe of the dam base (π5=1). After carrying out the different simulations for all 

π5 = 0.5 casuistry, it was observed that, for all the sheet pile lengths (π6) and all the possible 

permeability relations (π1), the dimensionless values of the uplift force are always πUF = 0.5. As 
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commented before, this is the same that occurred for the dimensionless value of the uplift force 

in dams without a sheet pile, where πUF takes the value of 0.5 for the chosen values of π1, π2 and 

π3. Moreover, manuals such as those of Muskat [1937] and Harr [2012] show that, when locating 

the sheet pile at the middle of the dam base, the uplift force value is the same as for dams 

without sheet pile, which would mean that the dimensionless values must be the same too.  

For the case of π5 = 0, Figure 4.27, the effect of π6 on the behaviour of πUF is due to the pressure 

drop caused downstream the pile, which increases with the length of the pile. For this reason, 

as the pore pressure decreases, the same happens with the uplift force.  

Monomial π1 plays a similar role than π6, since its increase leads to a higher pressure drop 

downstream the sheet pile, decreasing the value of πUF.  

 
Figure 4.28. Dimensionless uplift force for π5 = 1 

For π5 = 1, Figure 4.28, the behaviour of πUF is the opposite of that in Figure 4.27 for both π1 and 

π6: if locating the sheet pile at the toe of the dam base, its length and a higher horizontal 

permeability mean a pore pressure increase along the dam base. For this reason, it can be said 

that the values of πUF for π5 = 1 are symmetrical to those for π5 = 0 respect to a horizontal axis in 

πUF = 0.5. 

The next variable to discuss is the application point of the uplift force. In order to understand its 

behaviour, as commented before, some of the dimensionless pore pressure distribution abaci 

are also included. Figure 4.29 is the abacus of πC  for π5 = 0.  
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Figure 4.29. Dimensionless application point of the uplift force for π5 = 0 

Studying the application point when the sheet pile is located at the dam heel (π5 = 0), three sets 

of curves can be distinguished according to π1 values: low (0.03 and 0.1), medium (0.3-1), and 

high (2-30).  

For low π1 values, the dimensionless application points present little variation with the sheet pile 

length (π6), because the pore pressure curves (presented in Figure 4.30 for π1 = 0.1 and all values 

of π6) are very close to each other. In this way, the application points are hardly affected. 

 
Figure 4.30. Dimensionless pore pressure distribution for π1 = 0.1 and π5 = 0 
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If the values of πC are studied for medium values of π1, these increase with the sheet pile length. 

The effect can be observed in Figure 4.31, which shows the pore pressure graphics for all values 

of π6 and π1=1. These curves have more disparate dimensionless pore pressure values on the left 

half of the dam base, getting lower values as π6 is incremented. In the right half of the dam base, 

however, those differences are smaller. All these makes the application point move 

downstream, increasing the dimensionless value. 

 
Figure 4.31. Dimensionless pore pressure distribution for π1 = 1 and π5 = 0 

If, still for π5=0, we studied the application point for high values of π1, its behaviour is more 

complex to estimate. According to Figure 4.32 (for π1 = 10), the pore pressure curves are 

different to each other along the whole dam base for each value of π6.  

 
Figure 4.32. Dimensionless pore pressure distribution for π1 = 10 and π5 = 0 
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Figure 4.33 shows the behaviour of variable πC when the sheet pile is placed in the middle of the 

dam base, π5 = 0.5. 

 
Figure 4.33. Dimensionless application point of the uplift force for π5 = 0.5 

In Figure 4.33 we observe that, in all cases, as π6 increases, the dimensionless application point 

decreases. As the sheet pile length is larger, the pore pressure before it and under the dam 

increases, and the opposite happens on the other half of the base. In this way, the application 

point of the uplift force moves upstream, so its value decreases. This happens for each value of 

π1. Figure 4.34 gives an example of pore pressure curves for π1 = 1. 

 
Figure 4.34. Dimensionless pore pressure distribution for π1 = 1 and π5 = 0.5 
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Considering the effect of π1 presented in Figure 4.33, it shows a change of trend (for low values 

of π6): πC grows for π1 ≤ 0.5 and, from this point, it declines. It must be pointed out that, for low 

values of π1, the pore pressure curves (for each value of π6) are very close among them, so the 

application point variable hardly varies. For higher values of π1, these curves are more separated 

to each other, strongly affecting the location of the application point.  

Finally, Figure 4.35 is the abacus for the dimensionless application point under the dam for π5 = 

1 (sheet pile at the dam toe).  

 
Figure 4.35. Dimensionless application point of the uplift force for π5 = 1 

In this case, the behaviour is easier to estimate: the higher the value of π6, the higher that of πC, 

since the increase of the sheet pile length leads to the increase of the pore pressure along the 

base. This can be observed in Figure 4.36 for a value of π1 = 1.  

 
Figure 4.36. Dimensionless pore pressure distribution for π1 = 1 and π5 = 1 
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The effect of π1 shown in Figure 4.35 is similar, since, as this variable grows, the application point 

moves downstream (the pore pressure is increased along the dam base) and its value is 

increased.  

The abaci related to the dimensionless average exit gradient is shown in Figure 4.37. In this case, 

it has only been studied for a sheet pile located at the dam feet.  

 
Figure 4.37. Dimensionless average exit gradient for π5 = 1 

The effect of π1 and π6 is similar as for the study of the dimensionless groundwater flow. In the 

case of π1, the higher this variable is, the higher the potential variation along the sheet pile 

becomes and, therefore, a lower variation under the dam. In this way, the average exit gradient 

increases. Moreover, if π6 increases, this means that the sheet pile is a longer surface where the 

potential variation is applied, so the value of πIe,ave decreases.  

The following variable whose abaci are presented are those of the dimensionless force on the 

upstream side of the sheet pile (πFUS). The variable is again presented for the three sheet pile 

positions studied in this section (π5 = 0, 0.5 and 1). Figure 4.38 shows the abacus for π5 = 0, Figure 

4.39 for π5 = 0.5 and Figure 4.40 for π5 = 1.  
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Figure 4.38. Dimensionless force on the upstream side of the sheet pile for π5 = 0 

Studying Figure 4.38, it is observed that the effect of π1 and π6 is similar, since in both cases, 

when any of them increases, πFUS decreases. The effect of π6 is because, when the sheet pile 

length increases, the potential variation grows, keeping constant the value on the upper end. 

For this reason, as it is compared with the reference value (dୱ∆hγ୵), the dimensionless value is 

reduced. Referring to π1, when the sheet pile is located at the dam heel, the water must flow 

through a longer vertical distance. For this, if the value of π1 is high, the flow is hindered, and 

the potential variation is higher at this side of the sheet pile. This is translated into a lower value 

of πFUS.  

Figure 4.39 is the abacus of the variable πFUS when the sheet pile is located at the centre of the 

dam base.  

According to Figure 4.39, when placing the sheet pile at the centre of the dam base, the 

dimensionless force on the upstream side of the sheet pile increases with monomials π1 and π6. 

The effect of π1 is similar to that for π5 = 0; however, when obtaining the dimensionless value, 

due to the way it is calculated and turned into dimensionless, instead of decreasing as the 

monomial grows, it increases because it involves higher values of water head at the upper side 

of the pile.  
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Figure 4.39. Dimensionless force on the upstream side of the sheet pile for π5 = 0.5 

Monomial π6 affects πFUS in a similar way. The increase of the sheet pile length leads to an 

increment of the potential variation. Moreover, since the potential value at the base of the sheet 

pile (of negligible thickness) always presents the average value of the upstream and downstream 

potentials, ୦భା୦మ

ଶ
, independently of its length, the potential variation increased.  

Finally, Figure 4.40 shows the abacus of πFUS for the scenarios in which the sheet pile is placed 

at the dam toe (π5 = 0).  

According to Figure 4.40, the effect of the monomials π1 and π6 is like that of placing the sheet 

pile at the centre. πFUS increases with the growth of π1 because an increase of the horizontal 

permeability with respect to the vertical one creates a higher water head variation along the 

sheet pile, which leads to larger head values involved in the force. This means an increase of the 

dimensionless variable.  

The effect of π6  on πFUS is similar to the one of the permeability monomial since the increase of 

the sheet pile length means a higher water head variation, involving again larger potential 

values. In this way, the dimensionless force also becomes larger as π6 grows.  
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Figure 4.40. Dimensionless force on the upstream side of the sheet pile for π5 = 1 

It is interesting to focus on the universal curves of πFDS as the following step, because, as shown 

later, variables πFUS and πFDS are somehow related. The first abacus presented is πFDS for π5 = 0 

(Figure 4.41).  

 
Figure 4.41. Dimensionless force on the downstream side of the sheet pile for π5 = 0 

According to Figure 4.41, the variable πFDS decreases its value as π1 and π6 increase, since they 

both lead to a higher potential variation along that side of the sheet pile. However, at this side 

of the structure, the increase of the water head variation means lower values of the water head 

and, therefore, lower dimensionless force. Moreover, Figure 4.41 (πFDS abacus for π5 = 0) is 
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related to Figure 4.40 (πFUS abacus for π5 = 1), since both scenarios are symmetrical. The values 

of the two scenarios can be obtained as follows, Equation (IV-49): 

π୊ీ౏
(πଵ, πହ = 0, π଺) = 1 − π୊౑౏

(πଵ, πହ = 1, π଺)      (IV-49) 

The following abacus, Figure 4.42, is the set of universal curves πFDS for π5 = 0.5.  

 
Figure 4.42. Dimensionless force on the downstream side of the sheet pile for π5 = 0.5 

As in the previous scenario, the increase of the governing monomials π1 and π6 leads to the 

decrease of the dimensionless variable πFDS because similar reasons as in the last scenario: they 

lead to an increase of the water head variation that, at the downstream side of the pile, means 

lower head values.  

In addition, the dimensionless values of the forces on both sides of the sheet pile are associated 

(since the scenario is symmetrical). This means that the values in Figure 4.42 and Figure 4.39 are 

related, and those of the downstream side can be obtained with those of the upstream side 

following Equation (IV-50).  

π୊ీ౏
(πଵ, πହ = 0.5, π଺) = 1 − π୊౑౏

(πଵ, πହ = 0.5, π଺)      (IV-50) 

The last abacus to show for πFDS is for π5 = 1, Figure 4.43. In this case, the monomial πFDS behaves 

in the opposite way of that for π5 = 0 and π5 = 0.5, since its value is increased as π1 and π6 do the 

same. The reason why this occurs, however, is the same as in those scenarios: the water head 

variation grows, and it can only occur by increasing the potential values at the bottom area of 

the pile, which leads to an increase on the dimensionless force on the downstream side. 

The abacus of πFDS for π5 = 1 is related to the one presenting a symmetrical scenario, which is 

πFUD for π5 = 0. The values of the two abaci are associated according to Equation (IV-51): 

π୊ీ౏
(πଵ, πହ = 1, π଺) = 1 − π୊౑౏

(πଵ, πହ = 0, π଺)      (IV-51) 
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Figure 4.43. Dimensionless force on the downstream side of the sheet pile for π5 = 1 

For the application point of the force on the upstream side of the sheet pile, the first abacus is 

the one for π5 = 0 (Figure 4.44).  

 
Figure 4.44. Dimensionless application point of the force on the upstream side of the sheet pile for π5 = 0 

Figure 4.44 presents the behaviour of the curves of the application point in the upstream side 

of the sheet pile. This variable decreases with π1 and π6, as happened for the dimensionless force 

on the upstream side for π5=0. As the water head variation increases (inducing a reduction in 

the potential value at the bottom of the pile), the dimensionless application point moves 

upwards, so its value becomes lower. This is the case ofπ1 and π6: on the one hand, the effect of 

π1 is due to the increase of the horizontal permeability respect to the vertical one; on the other 
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hand, increasing the value of π6 means that the sheet pile is longer, and that leads to an increase 

of the potential variation.  

The abacus of πCUS for π5 = 0.5 is shown in Figure 4.45.  

 
Figure 4.45. Dimensionless application point of the force on the upstream side of the sheet pile for π5 = 0.5 

The behaviour respect to π1 and π6 is the opposite of that of the force for the same scenarios, 

since in this case, as for the previous abacus, the value of πCUS decreases with the increase of 

both monomials. However, the reasons are the same. As π1 and π6 become higher, the increase 

of the potential variation generates an increment of the hydraulic potential values in the upper 

area of the sheet pile. This leads to a displacement of the application point to the upper zone, 

so the values of πCFUS become lower.  

Finally, Figure 4.46 shows the universal curves of πCUS for π5 = 1.  

 
Figure 4.46. Dimensionless application point of the force on the upstream side of the sheet pile for π5 = 1 
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The effect of π1 and π6  is the same as in the two previous configurations. Moreover, in this case, 

the same occurs as for the sheet pile at the centre of the dam base: the behaviour is the opposite 

of that of the force on that side of the sheet pile, since it decreases as π1 and π6. The reasons are 

the same as in the previous case because the increase of the potential at the upper area of the 

sheet pile, displacing the application point there and reducing then the value of πCUS.  

The last variable is the application point of the force on the downstream side of the pile. The 

first abacus is that for π5 = 0 (Figure 4.47).  

 
Figure 4.47. Dimensionless application point of the force on the downstream side for π5 = 0 

Figure 4.47 shows that the behaviour of πCDS respect to π1 and π6 is the opposite of that of the 

dimensionless application point for the same configuration on the upstream side (πCFUS) since it 

now grows as the two monomials increase.  

As effect of an increase of π1, there is a higher potential variation, which leads to lower values 

of potential on the upper side of the sheet pile. This is translated into a displacement of the 

application point to the lower area of the sheet pile. For this reason, the value of the 

dimensionless application point increases. π6 affects this variable in a similar way, as the increase 

of the sheet pile lengths means that the potential values on the upper zone are lower, displacing 

therefore the dimensionless application point to the lower zone of the sheet pile.  

Figure 4.48 presents the abacus of πCFDS
  for π5 = 0.5.  
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Figure 4.48. Dimensionless application point of the force on the downstream side of the sheet pile for π5 = 0.5 

When placing the sheet pile at the centre of the dam base (Figure 4.48), the effect of π1 and π6 

on the dimensionless application point on the downstream side is the same as for the previous 

configuration. The reasons are similar to those mentioned in the previous case, since, either for 

the increase of the horizontal permeability (π1) or the sheet pile length (π6), there is a reduction 

of the hydraulic potential in the upper zone of the sheet pile, so the dimensionless application 

point is displaced to its lower zone.  

Finally, the universal curves of πCDS
 for π5 = 1 are shown in Figure 4.49.  

 
Figure 4.49. Dimensionless application point of the force on the downstream side of sheet pile for π5 = 1  

The effect of π1 and π6 is the same as for the previous configurations, this is, it grows with these 

monomials. The reason is the increase of the potential values in the lower area of the sheet pile 

(in the upper zone, it takes an imposed value of h2). For this, the application point is displaced 
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to the lower area of the sheet pile, either for higher value of horizontal permeability or a longer 

sheet pile, and this means that the dimensionless application point increases its value. 

 

IV.2.3. Flow under gravity dams in an infinite medium 

IV.2.3.1 Mathematical model  

Let us present the following case: a dam on the surface of the stratum with a width much smaller 

than the other quantities of the problem (upstream and downstream length, and stratum 

thickness). In fact, these quantities would be so big that they could be considered as infinite, 

although to run any code (including the one developed in this thesis) and obtain the results, 

their values must be introduced. However, from which value of these quantities can the problem 

be considered as infinite? Which parameters (and which range) are involved? 

For this, the study must be started with the finite case, meaning this that the governing equation 

and boundary condition are the same as in Sections IV.2.1 and IV.2.2:  

κ୶
பమ୦

ப୶మ + κ୷
பమ୦

ப୷మ = 0          (IV-3) 

ଵ

ச౯

பమஏ

ப୶మ +
ଵ

ச౮

பమஏ

ப୷మ = 0          (IV-7) 

h = h୭,୰    at boundary regions 1,2…r (first class)    (IV-4) 

ப𝐡

ப୬
ቚ

ୱ
= 0    at boundary regions 1,2…s (second class)    (IV-5) 

Ψ = Ψ୭,୮    at boundary regions 1,2…p (first class)    (IV-8) 

பஏ

ப୬
ቚ

୯
= 0    at boundary regions 1,2…q (second class)    (IV-9) 

In this scenario, the dam has no foundations. Figures 4.50 and 4.51 present the nomenclature 

and the boundary conditions.  
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Figure 4.50. Nomenclature of the studied problem 

 
Figure 4.51. Boundary conditions of the studied problem 

 

IV.2.3.2 Dimensionless governing equation and discriminated monomials 

In order to obtain the dimensionless groups that rule the scenario studied in this section, the 

variables involved in the governing equation (Equation (IV-3)) are turned into dimensionless 

variables. However, in this case, instead of dividing the horizontal variable x by the dam width, 

since this parameter becomes negligible if considering infinite media, it is divided by the 

horizontal medium length upstream the dam, a. In this way, the new dimensionless variables 

are  

 xᇱ =
୶

ୟ
, yᇱ =

୷

ୌ
, hᇱ =

୦

∆୦
         (IV-52) 
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and the dimensionless governing equation turns to be 

ச౮

ୟమ

பమ୦ᇱ

ப୶ᇱమ +
ச౯

ୌమ

பమ୦ᇱ

ப୷ᇱమ = 0          (IV-53) 

Then, employing Equation (IV-53) to obtain the first monomial ruling the problem leads to a 

different definition of π1, which is still a permeability ratio, but in this case the aspect relation is 

different.  

πଵ =
ச౮ୌమ

ச౯ୟమ            (IV-54) 

In order to reach an ‘infinite’ medium by simulations, the procedure that has been followed 

increasing the values of H, a and b until they reach very high values. Moreover, they have been 

supposed to have the same value, so they all approach ‘infinite’ at the same time. According to 

this, the three parameters are given the same value in each simulation, L (discrimination is 

considered in this scenario, so they keep their discriminated dimensions). This means that 

Equation (IV-54) can be transformed into  

πଵ =
ச౮୐మ

ச౯୐మ =
ச౮

ச౯
           (IV-55) 

This new definition of π1 is not dimensionless but works as it is. This fact is also considered by 

Muskat [1937] and Harr [2012] for the curves and abaci presented in their works, which 

depended on a monomial that was an aspect ratio, so it has dimensions. However, as the soil 

they considered was isotropic, their aspect ratios were simply degenerations of dimensionless 

monomials akin to the ones in Equations (IV-54) and (IV-12) where the permeability (or hydraulic 

conductivity) values are the same, even if they have different discriminated dimensions.  

Monomial π2, previously presented in Equation (IV-13) loses its meaning in this section, since for 

all the cases studied here, the length of the dam foundation is always 0. Moreover, as the 

stratum thickness will be increased until reaching an ‘infinite’ value, π2 would lose its importance 

anyway.  

The following group, π3, keeps the same expression as in the previous problems studied in this 

chapter, which is  

πଷ =
ୟ

୵ౚ
           (IV-14) 

As π3 increases its values, it will become negligible and will not govern the dimensionless 

scenario. 
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Finally, π4 (= ୟ

ୠ
) presents a constant value of 1, because a and b take the same values in every 

case, as happens with H. The result that is expected will be only ruled by π1, which in this case is 

a simple ratio of hydraulic conductivity.  

The aim of this study is to achieve the dimensionless values of groundwater flow πQ according 

to the permeability ratio when the scenario can be considered as infinity. To this, new 

dimensionless unknown monomials related to the characteristic lengths are studied. They can 

be defined as those through which a significant percentage of flow runs, as they show the most 

relevant areas from a hydrogeological point of view. For this work, it is decided to study these 

lengths for values of 95% and 90% of the total flow, as these percentages involve most of the 

flow rate. The dimensionless groundwater flow variable presents the same formulation, 

Equation (IV-21), while the dimensionless characteristic length monomials are defined as 

presented in Equations (IV-56) to (IV-59). In order to simplify their definition, for the 

dimensionless lengths, the dimensional ones are divided by L instead of a and b for horizontal 

lengths and H for vertical lengths.  

π୕ =
୕

ඥச౮ச౯∆୦
           (IV-19) 

L୶,୬୭୬ୢ୧୫,ଽହ% =
୪౮,వఱ

୐
= π୐౮,వఱ

         (IV-56) 

L୶,୬୭୬ୢ୧୫,ଽ଴% =
୪౮,వబ

୐
= π୐౮,వబ

         (IV-57) 

L୷,୬୭୬ୢ୧୫,ଽହ% =
୪౯,వఱ

୐
= π୐౯,వఱ

         (IV-58) 

L୷,୬୭୬ୢ୧୫,ଽ଴% =
୪౯,వబ

୐
= π୐౯,వబ

         (IV-59) 

 

IV.2.3.3 Universal abaci 

The values of π3 presented go from 1 to 5000 in every case (except for π1 = 0.01, where it goes 

up to 10000), also presenting the value of 200000 to check if unknown monomials get to an 

asymptotic value. For π1, on the other side, values 1, 10, 100, 0.1 y 0.01 are presented. Figure 

4.52 shows the results for the dimensionless groundwater flow (πQ), Figure 4.53 for the 

characteristic length in vertical direction for a flow of 95 % (πLy,95), Figure 4.54 for the 

characteristic length in horizontal direction for a flow of 95 % (πLx,95), Figure 4.55 for the 

characteristic length in vertical direction for a flow of 90 % (πLy,90) and Figure 4.56 for the 

characteristic length in horizontal direction for a flow of 90 % (πLx,90). 
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Figure 4.52. Trend of the dimensionless groundwater flow 

 
Figure 4.53. Trend of the dimensionless characteristic length in the vertical direction for 95% flow 
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Figure 4.54. Trend of the dimensionless characteristic length in the horizontal direction for 95% flow  

 

Figure 4.55. Trend of the dimensionless characteristic length in the vertical direction for 90% flow 
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Figure 4.56. Trend of the dimensionless characteristic length in the horizontal direction for 90% flow 

Two observations can be mentioned: i) the value for each of the unknown monomials studied 

according to monomial π1 trends to the ones presented in Table 4.1 and ii) π3 loses its importance 

when trending to an infinite value.  

Table 4.1. Limit values of unknown monomials according to π1 

π1 0.01 0.1 1 10 100 

πQ 1.212 1.565 1.781 1.565 1.212 

πLy95 0.871 0.835 0.782 0.412 0.141 

πLx95 0.141 0.412 0.782 0.835 0.871 

πLy90 0.757 0.689 0.6 0.276 0.097 

πLx90 0.097 0.276 0.6 0.689 0.757 

As it appears in Table 4.1, πQ takes the same value for π1= 10 and 0.1, and the same happens for 

π1= 100 and 0.01. Something similar occurs for the characteristic length. If πLy,95 for π1=10 and 

πLx,95 for π1=0.1 values are compared, it is visible that both are the same, 0.412. This can also be 

observed for the following combinations: 

- πLy,90 for π1=10 and πLx,90 for π1=0.1, 0.276 

- πLx,95 for π1=10 and πLy,95   for π1=0.1, 0.835 

- πLx,90 for π1=10 and πLy,90 for π1=0.1, 0.689 

- πLy,95 for π1=100 and πLx,95 for π1=0.01, 0.141 

- πLy,90 for π1=100 and πLx,90 for π1=0.01, 0.097 
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- πLx,95 for π1=100 and πLy,95 for π1=0.01, 0.874 

- πLx,90 for π1=100 and πLy,90 for π1=0.01, 0.757 

In this way, employing the previous abaci, the user can estimate the maximum groundwater rate 

flow and the influence area to expect in large scenarios. This estimation is feasible whether the 

soil consists on isotropic or anisotropic medium.  

 

IV.2.4 Steady flow in unconfined aquifers due to a pumping well  

IV.2.4.1 Mathematical model  

Unconfined aquifers present the characteristic that their upper border (phreatic level) is at 

atmospheric pressure. This means that, if the reference for the vertical coordinates, z=0, is set 

at the bottom of aquifer, the water head values at the phreatic level  are those of the vertical 

coordinate at those points. Unlike confined aquifers, in which the water head value is always 

above its roof (even if it varies), modelling pumping wells in unconfined aquifers becomes 

difficult. The presence of the potential within the limits of the stratum thickness leads to the 

appearance of vertical flow, an effect that has been disregarded in traditional approaches to the 

problem.  

As for any other problems of flow through porous media, Laplace equation also describes this 

phenomenon. Equation (IV-61) shows Darcy’s law for 2-D radial media.  

v୰ = −κ୰
ப୦

ப୰
 and v୸ = −κ୸

ப୦

ப୸
         (IV-60) 

In addition, steady state problem and no sources or sinks are considered, the continuity 

equation can be expressed as in Equation (IV-61). 

ଵ

୰

ப

ப୰
(rv୰) +

ப୴౰

ப୸
= 0         (IV-61) 

Once Darcy’s law is introduced in the continuity equation, Laplace expression for anisotropic soil 

in radial 2-D coordinates is deduced (Equation (IV-62)).  

κ୰
ଵ

୰

ப

ப୰
ቀr

ப୦

ப୰
ቁ + κ୸

பమ୦

ப୸మ = 0         (IV-62) 

Isotropic soils can be considered too, with κr=κz=κ, so Equation (IV-62) is simplified to Equation 

(IV-63).  

ଵ

୰

ப

ப୰
ቀr

ப୦

ப୰
ቁ +

பమ୦

ப୸మ = 0          (IV-63) 
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As commented previously, traditional formulation does not consider vertical flow either far from 

the well center or in its vicinity. If that term is removed from Equation (IV-63), the traditional 

expression for modelling these problems is obtained.  

ଵ

୰

ப

ப୰
ቀr

ப୦

ப୰
ቁ = 0           (IV-64) 

In order to reach Dupuit’s solution [1863] as well as understand the nomenclature of the 

problem, Figure 4.57 shows a sketch of the scenario with the variables and parameters involved. 

 
Figure 4.57. Nomenclature of the studied problem 

The advantage of employing Dupuit’s solution is its simplicity to obtain an analytical formulation 

that relates water flow and potential variation.  

r ቀ
ப୦

ப୰
ቁ = cଵ , according to Equation (IV-65). Moreover, Darcy’s law states that Q = 2πrhκ

ப୦

ப୰
, so 

the constant value c1 must take the value cଵ =
୕

ଶ஠୦ச
. This leads to Equation (IV-65).  

h ∂h =
୕

ଶ஠ச

ப୰

୰
           (IV-65) 

The first term of Equation (IV-64) is now integrated from h to H and the second one from r to R, 

thus, Dupuit’s solution is obtained.  

Hଶ − hଶ =
୕

஠ச
ln

ୖ

୰
          (IV-66) 

The appearance of a second term in the governing equation that involves the vertical variation 

of the potential makes the mathematical resolution of the problem very complex, and the 

possibility of reaching an analytical solution is almost impossible without assuming other 
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simplifications. This is the reason why a numerical model based on the network method has 

been chosen to study these problems, so phenomena such as the seepage surface (hs-hw in 

Figure 4.57) can be studied.  

Once the governing equation has been obtained, the boundary conditions must be set in order 

to complete the mathematical model. Again, as in the other problems previously studied along 

this chapter, two kinds of boundary conditions are needed: first class conditions (or Diritlech 

conditions), which are employed to model those borders with constants values of water head, 

and second class conditions (or Neumann conditions) correspond to impervious borders. Their 

expressions are shown in Equations (IV-4) and (IV-5).  

h = h୭,୰    at boundary regions 1,2…r (first class)    (IV-4) 

ப𝐯

ப୬
ቚ

ୱ
= 0    at boundary regions 1,2…s (second class)    (IV-5) 

Unlike the problems previously studied here two different types of first -class boundary 

conditions have to be employed. There are borders on which the same water head values is set 

along it, while on others the constant value changes in each of its points. Moreover, the 

scenarios of flow in unconfined aquifers present two more kind of borders: free surface and 

seepage surface, and those are not data, but unknowns of the problem. Figure 4.58 shows the 

boundary conditions of the problem.  

 
Figure 4.58. Boundary conditions of the studied problem 

 

IV.2.4.2 Dimensionless governing equation and discriminated monomials 

In scenarios of flow in unconfined aquifers due to a pumping, the parameters employed to 

obtain the dimensionless monomials governing the problem are the following: 
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R: aquifer horizontal length or radius (or if the scenario is very extent, it can be substituted 
by the influence radius) (m) 

rw: well radius (m) 
h1: water potential before pumping (m) 
hw: water potential in the well when it is pumping (m) 
H: aquifer thickness (m) 
Δh: h1-hw (m) 

Along this thesis, H and h1 are considered of the same value, although the first is a vertical length 

and the second is a water head or potential. For this reason, in some of the expressions where 

h1 should appear, the parameter used is H.  

These variables can be considered as references in order to obtain the discriminated 

dimensionless governing equation. Therefore, the references for variable r, z and h are R, h1 and 

Δh are  

rᇱ =
୰

ୖ
; r = rᇱR, zᇱ =

୸

୦భ
; z = zᇱhଵ, hᇱ =

୦

∆୦
, h = hᇱ∆h       (IV-67) 

from which 

∂r = ∂rᇱR; ∂rଶ = ∂r′ଶRଶ, ∂z = ∂zᇱhଵ;  ∂zଶ = ∂z′ଶhଵ
ଶ, ∂h = ∂hᇱ∆h; ∂ଶh = ∂ଶh′∆h  (IV-68) 

Introducing these expressions into the governing equation (Equation (IV-63), its dimensionless 

form is set  

κ୰
ଵ

୰ᇲୖ

ப

ୖ ப୰ᇲ ቀrᇱR
∆୦ ப୦ᇲ

ୖ ப୰ᇲ ቁ + κ୸
∆୦ பమ୦ᇱ

୦భ
మ ப୸మ

= 0        (IV-69) 

It is visible that the solution does not depend on the variation of water potential due to the 

pumping well. If the derivatives of r’, z’ and h’ are assumed to be of order of magnitude unity, 

two dimensionless groups can be obtained 

πଵ =
ச౨୦భ

మ

ச౰ୖమ =
ச౨ୌమ

ச౰ୖమ          (IV-70)  

πଶ =
୰౭

ୖ
           (IV-71)  

Nevertheless, the expressions for π1 that are going to be used in this thesis are 

πଵ = ට
ச౨

ச౰

୦భ

ୖ
 or ට

ச౨

ச౰

ୌ

ୖ
         (IV-72) 

The monomial π1 can also be expressed as ச౨ୌమ

ச౰୰౭
మ  or ට

ச౨

ச౰

ୌ

୰౭
, since the two horizontal lengths are 

related by equation (IV-72). This second way to express π1 can be useful, as we see later in this 

section, where it is called π1’. The second monomial, π2, can also be obtained if the geometrical 
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conditions are studied, specifically those in the horizontal direction. Considering geometrical 

conditions too, in this case involving vertical ones, another discriminated monomial is deduced  

πଷ =
୦౭

ୌ
           (IV-73) 

The effects of the monomials on the flow depend on how they affect radial and vertical flows, 

since in this kind of problems water flow is predominantly radial. A high value of π1 means that 

radial flow is more important than vertical one, and the opposite happens if the value is low.  

Referring to π2, it shows the behaviour of the horizontal flow. The lower the value of this 

monomial is, the more relevant the horizontal flow is since the vertical borders, where the 

hydraulic potentials are applied, are further from each other. Finally, π3 shows the importance 

of vertical flow, as, if considering that the well only works pumping water out of the aquifer, low 

values of this group are equivalent to a higher importance of vertical flow.  

Among the unknowns that can be investigated in this kind of problems, the first one is the water 

flow pumped out of the system, which can be transformed into a dimensionless variable if the 

correct reference is found. This can be obtained from different means, but it always should keep 

the same units of the water flow. In the next paragraph a possible reference flow Qref is deduced.  

In this work, the reference flow is considered as a horizontal flow generated by the hydraulic 

potential change (H-hw). This flow runs along the aquifer horizontal length (R-rw). A general 

expression of the reference flow can be Q୰ୣ୤ = v୰ୣ୤ · S୰ୣ୤, where the reference velocity can be 

defined as 

v୰ୣ୤ = κ୰
ୌି୦౭

ୖି୰౭
           (IV-74) 

with discriminated units 
[୐౨]

[୘]
, where κ୰ =

[୐౨]మ

[୘][୐౭ౙ]
, H and h୵ = [L୵ୡ], and R and r୵ = [L୰].  

The reference cross-section (Sref) is the lateral surface of a cylinder that, in order to reach 

dimensionless values of water flow lower than 1, presents radius R and height H: S୰ୣ୤ = 2πRH, 

with discriminated units S୰ୣ୤ = [L஑][L୸]. The reason why, although parameter R has units [Lr], 

the units of Sref are [L஑][L୸] is that, as R is multiplied by 2π in order to obtain the horizontal 

length of the cylinder, the unit of the whole product is [L஑] (see Alhama y Madrid [2012]). In this 

way, the reference water flow presents the expression   

Q୰ୣ୤ = κ୰
ୌି୦౭

ୖି୰౭
2πRH          (IV-75) 

This variable has the same units of the water flow obtained by the simulation, 
[୐౨][୐ಉ][୐౰]

[୘]
, so the 

monomial is dimensionless.  
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π୕ =
୕

ச౨
ౄష౞౭
౎ష౨౭

ଶ஠ୖୌ
          (IV-76) 

The second unknown variable to be studied is the seepage surface, which is the length above 

the well through which water also flows (alternatively, it might be defined as the length of the 

well wall where the water head is higher than its vertical position). The variable hs is the whole 

contact surface between the well and the aquifer where the potential is higher than the position, 

as authors such as Hall [1955] or Simpson et al. [2003] have considered in their work.  

The deduction of the dimensionless group which includes the seepage surface is simpler than 

that of the water flow, as it must include somehow a ratio of this variable and one of the 

boundary hydraulic potentials (or the difference of the two of them). After trying different 

options of dimensionless group for this variable, the one which leads to more understandable 

and accurate results is   

π୦౩
=

୦౩ି୦౭

ୌ
           (IV-77) 

This dimensionless group includes both the initial hydraulic potential in the aquifer and the 

potential imposed in the well.  

The last dimensionless variable that is presented here is the influence radius, Rinf. In this thesis, 

the influence radius has been defined as the radius value from which, if the aquifer is bigger, the 

difference between the estimate and the real groundwater flow would be less than a certain 

(low) percentage. Again, as in the two previous unknowns, different expressions can be deduced 

to obtain the dimensionless value of a variable. In this case, Equation (IV-78) shows the two 

possibilities for the influence radius.  

πୖ୧୬୤ =
ୖ౟౤౜

୰౭
 or

ୖ౟౤౜

ට
ಒ౨
ಒ౰

·ୌ
          (IV-78) 

 

IV.2.4.3 Universal abaci 

Four different abaci are presented in order to characterize this problem: one for the 

groundwater flow (Figure 4.59), another one for the seepage surface (Figure 4.60), and the last 

ones for the influence radius considering a difference of 10% between two consecutive 

iterations in which the aquifer’s radius is increased a considered length (Figures 4.61 and 4.62). 

The last value of π3, 0.001, is used to approach the problem of a well where the hydraulic 

potential is imposed to be at its bottom, and therefore, the aquifer’s one, as the well is 

considered as fully penetrating.  
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After all the simulations, it was evident that the differences of πQ according to π1 for the same 

values of π2 and π3 were low enough to consider that the group involving hydraulic conductivities 

does not affect the dimensionless water flow (the highest difference is around 2.3%). This fact 

leads to a simplification of the abacus (Figure 4.59) as it only includes one curve for each π2.  

 
Figure 4.59. Dimensionless groundwater flow 

Beyond the ‘lack of effect’ of π1 monomial, it is also relevant to know how the geometrical 

conditions affect the problem, this is π2 and π3. Referring to the effect on water flow, it can differ 

whether the real or the dimensionless water flow is being considered. Studying the impact of 

π2, it is observed that, as it increases its value (which means that the well radius is wider), the 

pumping capacity is also increased. These influence both real and dimensionless water flow.  

π3 affects differently the behaviour of real and dimensionless water flow. If studying the real 

variable, the lower the value of π3, the higher the potential difference is, which generates more 

water flow. Nevertheless, when comparing this with the reference flow, Qref, as it is also 

incremented with the decrease of π3, the difference between the two water flows also grows. 

This is translated into a reduction of πQ.  

Figure 4.60 presents the abacus for the dimensionless seepage surface, πhs, and unlike the 

dimensionless groundwater flow, this dimensionless variable is affected by the permeability 

monomial, π1.  
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Figure 4.60. Dimensionless seepage surface  

For this dimensionless variable, the effect of π1 is somehow expected: the higher the horizontal 

flow is, the higher the value of the seepage surface, because it is easier for the flow to go on in 

the horizontal direction. The monomial π2 has the opposite effect, as higher values of πhs are 

obtained as π2 decreases: low values of π2 stimulates horizontal flow. Finally, the effect of π3 is 

also expected: πhs increases its value with π3 as happens with the groundwater flow.  

The last dimensionless variable studied is the influence radius considering a difference lower 

than 10%. For this, two abaci are presented, one for each of the possible ways to turn it into 

dimensionless (Equation (IV-78)), Figures 4.61 and Figure 4.62  

After carrying out all the simulations it was observed that π3 had little effect on πRinf (the 

difference for a certain value of π1’ is always less than 1.02%). Therefore, the only monomial 

affecting the influence radius is π1’. As this group is increased, the dimensional influence radius 

also increases, which is shown in Figure 4.61. Changing the reference and introducing the 

anisotropy ratio, the trend is altered.  
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Figure 4.61. Dimensionless influence radius taking rw as reference 

 
Figure 4.62. Dimensionless influence radius taking ට

఑ೝ

఑೥
· 𝐻 as reference 

However, the influence radius present larger values if reducing the percentage from 10 to 1, 

which would probably lead to more realistic results to model a real scenario and the extension 

affected by the pumping well. Although this was the first idea, after carrying out the 

corresponding simulations, the results cannot be plotted in a universal curve or abacus, because 

of the high variability of results for π3 without any trend, and the lack of continuity for each π1’. 
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The maximum and minimum values of the dimensionless influence radius according to the 

second expression in Equation (IV-78) are shown in Table 4.2.  

Table 4.2. Minimum and maximum dimensionless influence radius for a groundwater flow differences of 1% 

π1’ Min πRinf Max πRinf 

5 16.94 21.70 

10 14.97 18.98 

20 14.87 17.58 

30 13.77 15.95 

40 13.81 14.91 

50 11.98 13.91 

60 12.84 12.98 

70 10.99 12.83 

80 10.97 12.76 

90 10.93 11.84 

100 9.97 11.73 

In this way, when modelling real scenarios, it would be a good practice to consider both value 

of influence radius, 10 and 1% of groundwater flow, and see the results obtained with both 

considerations. 

Most of the empirical formulations for the calculation of the dimensional influence value present 

the variable time in their expressions (for example Choultse and Koussakine, presented in 

Castany [1971]), since reaching a steady-state scenario is not always possible. Other authors do 

not include time in their formulation, for example Camberfort or Kyrieleis- Sichardt, also in 

Castany, but in these cases only isotropic hydraulic conductivity is involved. These are empirical 

formulations somehow based on Dupuit’s equation and, therefore, those depend on the same 

restrictions as this traditional expression. Finally, pumping manuals, such as that of Villanueva 

& Iglesias [1984], give a range of values for estimating the influence radius depending on the 

type of aquifer (confined, semi-confined and unconfined) as well as the type of material in the 

aquifer (karstic, porous or a mixture of the two previous). For an unconfined porous aquifer, the 

influence radius would be between 400 and 700 m, according to Villanueva & Iglesias.  

Chapter VI, in which Figures 4.59 and 4.60 are used to study an inverse problem related to flow 

in unconfined aquifers, presents examples of how to read values of groundwater flow from the 

abacus in Figure 4.59.  
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IV.2.4.4 Verification of the dimensionless groups 

In this section, the groups governing the problem of flow in unconfined aquifers due to pumping 

wells are verified with the dimensionless unknowns ‘groundwater flow’ and ‘seepage surface’. 

In this way, we can observe the validity of the discriminated nondimensionalization technique. 

Similar verifications have been carried out for all the scenarios presented in this chapter but, as 

they have so many unknowns variables whose universal abaci are studied, the validity is only 

illustrated for the scenarios of flow in unconfined aquifers. 

In order to verify a monomial, the process consists on designing different dimensional scenarios 

that can be turn into the same dimensionless problem, this is, the monomials governing the 

phenomenon take the same value. When the dimensionless expression of the unknown 

variables have been correctly obtained, then in all the designed scenarios they have the same 

value. If this does not occur, the definition of all the monomials must be revised so correct 

expressions can be found. As the scenario studied in this section has more than one governing 

monomial, then each monomial is verified with a different set of dimensional scenarios whose 

dimensionless translation only differs in the value of one monomial.  

Table 4.3 shows the dimensional geometric and hydraulic parameters of the different scenario, 

as well as their dimensional results. Table 4.4, however, shows the same scenarios, but 

summarized into their dimensionless form, so the cases can be paired into the same 

dimensionless problem. This is, Case 1 and Case 2 can be presented as the same dimensionless 

scenario, and so on. Cases 1 and 2 are the base dimensionless scenario, with π1 = 1, π2 = 0.1 and 

π3 = 0.5. In cases 3 and 4, π1 is changed from 1 to 0.2, keeping π2 and π3 the same as in cases 1 

and 2. Cases 5 and 6 have the same values of π1 and π3 as cases 1 and 2, while π2 takes now a 

value of 0.25. Finally, in cases 7 and 8 the same values of π1 and π2 as in cases 1 and 2 are 

employed, and π3 now is 0.7 instead of 0.5.  
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Table 4.3. Dimensional scenarios 

Case κr (m/s) κz (m/s) R (m) rw (m) H (m) hw (m) Q (m3/s) hs (m) 

1 0.0001 0.0001 10 1 10 5 0.0103 7.736 

2 0.000225 0.0001 15 1.5 10 5 0.0231 7.736 

3 0.0001 0.0001 50 5 10 5 0.0104 5.343 

4 0.0001 0.000025 50 5 5 2.5 0.0260 2.672 

5 0.0001 0.0001 10 2.5 10 5 0.0171 7.349 

6 0.0005 0.0001 22.36 5.59 10 5 0.0854 7.349 

7 0.0001 0.0001 10 1 10 7 0.0070 8.240 

8 0.0003 0.0001 10 1 5.77 4.07 0.0070 4.753 

 

Table 4.4. Dimensionless scenarios 

Case π1 π2 π3 πQ πhs 

1 1 0.1 0.5 0.295 0.274 

2 1 0.1 0.5 0.295 0.274 

3 0.2 0.1 0.5 0.297 0.034 

4 0.2 0.1 0.5 0.297 0.034 

5 1 0.25 0.5 0.408 0.235 

6 1 0.25 0.5 0.408 0.235 

7 1 0.1 0.7 0.334 0.124 

8 1 0.1 0.7 0.334 0.123 

As seen in Tables 4.3 and 4.4, although the dimensional scenarios in each pair are different, 

when turned into dimensionless, the value of the dimensionless unknown are the same, which 

verifies the technique employed along this chapter. The only values that differ are those of πhs 

in Cases 7 and 8, but this slight difference (below 1%) is due to the numerical simulation. 

Moreover, it is also interesting to remark the little difference between the values of πQ for π1 = 

1, π2 = 0.1 and π3 = 0.5 and for π1 = 0.2, π2 = 0.1 and π3 = 0.5, which are 0.295 and 0.297 

respectively. This shows what was explained previously in Figure 4.59: permeability monomial 

has little effect on the dimensionless groundwater flow (in this case, less than 0.7%).  

The effect of the other two monomials governing the scenario, π2 and π3, is the one shown in 

Figure 4.59: if the well radius is increased, then more dimensional and dimensionless 
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groundwater flow is obtained, while if the well height is the modified parameter (increasing its 

value), then the dimensionless flow increases, although this means that the dimensional flow 

has been decreased.  

The effect of the three monomials in the dimensionless values of the seepage surface, πhs is also 

the one shown in Figure 4.60. The decrease of monomial π1 leads to a lower value of the seepage 

surface. If π2 monomial is the one changed, increasing its value, it also leads to a decrease of the 

seepage surface. Finally, increasing π3 leads to a decrease in the seepage surface monomial. 

 

 



Chapter V. Network models and the software DamSim and WaWSim 

147 
 

 

 

Chapter V. Network models and the software 

DamSim and WaWSim 

 

 

 

In this chapter, first an introduction to the Network Method is presented, explaining how the 

different devices involved in the circuits are implemented from the equivalence between the 

constitutive equations that define them (which rule the electric circuits) and the addends of the 

governing equations that define the physical problem to be simulated. The following section 

explains how the Network Method and the electrical analogy are applied to simulate scenarios 

of flow under dams with or without a sheet pile, while Section V.3 shows the same for problems 

of flow in unconfined aquifers with pumping wells. Afterwards, the explanation of how the 

boundary conditions are implemented is presented (Section V.4). Section V.5 explains how the 

text file needed as input information for Ngspice is structured, and the next section shows the 

results that can be obtained and exported to Matlab. Finally, Section V.7 presents the different 

windows that make up the developed software and how they work.  

 

V.1 Network model creation process. Introduction 

When simulating problems of flow through porous media in steady-state condition, whether 

retaining structures or wells are being considered, Laplace equation is the one that governs the 

process. This partial derivative equation sets the balance of flow in each elemental volume of 
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the domain. Writing this equation in its spatially discretized form, each one of their addends is 

implemented as a current that cross a branch of the network model. All the currents balance 

each other in a common node identified as the central node of the cell or volume element. Thus, 

there are as many branches as terms in the discretized equation and each branch is electrically 

connected between the input or output node of the cell and the central one. Each branch of the 

cell in the network model implements a suitable electrical device (resistor, capacitor, controlled 

source…), according to the mathematical expression of the addends related to the branch. The 

set of these devices in conjunction with their topology, or electrical connections between them 

through the nodes, is what we name the network model of a cell. The whole model of the 

scenario is completed by making ideal electrical connections between adjacent cells and adding 

the devices that implement the boundary conditions at the face of the required cells.  

By doing all the steps mentioned above, the equivalence between the physical and electrical 

models is completely established thanks to the fact that the equations of both (in finite 

differences) are equivalent. The errors between the exact solutions and those of the electrical 

model are only attributable to the global number of cells in which the scenario is discretized and 

can be reduced with a sufficiently large value of them at the cost of increasing computation 

time. 

In this way, in both 2-D studied scenarios, the network model of the cell contains four branches, 

a pair for each of the second derivative terms of the equation, i.e., two for the horizontal flow 

and two for the vertical one. This means that, for each direction, inflow and outflow is being 

modelled or implemented in a separate branch. If transient flow, a fifth branch would appear in 

order to simulate the storage or partial time derivative addend.  

Setting the equivalence between physical and electrical variables: 

electric current, J (A)    water flow, Q (m3/s) 
electric potential, v (V)    water head, h (m) 

the expressions of the addends of the equations for a given cell (i,j) are 

Q୧,୨ = f൫hୟ୲ ୲୦ୣ ୬୭ୢୣୱ ୭୤ ୲୦ୣ ୡୣ୪୪ ୧,୨൯        (V-1) 

J୧,୨ = f൫Vୟ୲ ୲୦ୣ ୬୭ୢୣୱ ୭୤ ୲୦ୣ ୡୣ୪୪ ୧,୨൯         (V-2) 

Equations (V-1) and (V-2) are also equivalent each other. For instance, if a simple expression is 

obtained of an addend of the mathematical discretized model has the form  

Q୧,୨ =
୫

୬
(h୧,୨ − h୧ିଵ,୨)          (V-3) 
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we can set the analogue equation (Ohm´s law) 

Iୖ =
୚౎

ୖ
           (V-4) 

with Iୖ the electrical current that cross a resistor with a voltage Vୖ at its ends. The value of the 

resistance, placed between nodes i,j and i-1,j , is given by  

R =
୬

୫
            (V-5) 

In the two studied scenarios the only devices that are needed to model them are resistors, as all 

the terms involved in their governing equation are spatial variations of water potential.  

The circuit solution solved by Ngspice [2016] (a specific computer software for this purpose), 

provides all the unknowns of the model: i) voltages at all central and lateral nodes of the cell, ii) 

currents through each of the devices in each cell and iii) any other quantity related to the 

boundary conditions.  

 

V.2 Flow under gravity dams with or without a sheet pile 

For this geometry, whose scheme is presented in Figure 5.1 where water basically flows from 

left to right (x direction), the mathematical model is shown in Equations (V-6) to (V-11).  

 
Figure 5.1. Nomenclature of dam scenarios 

κ୶
பమ୦

ப୶మ + κ୷
பమ୦

ப୷మ = 0    (local balance equation)    (V-6) 
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h୶ୀ଴ିୟ,୷ୀ଴ = hଵ    (constant water potential upstream the dam)  (V-7) 

h୶ୀୟା୵ౚିୟାୠା୵ౚ,୷ୀ଴ = hଶ   (constant water potential downstream the dam) (V-8) 

ப୦

ப୶౮సబ,౯
=

ப୦

ப୶౮స౗శ౭ౚశౘ,౯
=

ப୦

ப୷౮,౯సౄ
= 0  (impervious outer borders)    (V-9) 

ப୦

ப୶౮స౗,౯సబషౚ
=

ப୦

ப୶౮స౗శ౭ౚ,౯సబషౚ
=

ப୦

ப୷౮స౗ష౗శ౭ౚ,ౚ
= 0 (impervious dam borders)   (V-10) 

ப୦

ப୶౮స౗శౙ౩.౯సౚషౚశౚ౩

=
ப୦

ப୶౮స౗శౙ౩శ౭౩,౯సౚషౚశౚ౩

=
ப୦

ப୷౮స౗శౙ౩ష౗శౙ౩శ౭౩,౯సౚశౚ౩

= 0  

(impervious sheet pile borders)   (V-11) 

Figure 5.2 presents the nomenclature of the elemental volume. Although the governing 

equation is the one presented in Equation (V-6), as commented previously in this thesis, it comes 

from the combination of the continuity equation and Darcy’s law  

Q୶,୧୬ − Q୶,୭୳୲ + Q୷,୧୬ − Q୷,୭୳୲ = 0        (V-12) 

 
Figure 5.2. Nomenclature of the elemental volume for problems of flow under dams 

The reason why it is decided to employ the continuity equation instead of Laplace’s  (Martínez-

Moreno et al. [2020]) is the need to use a progressive reticulation in which smaller cells are 

closer to the retaining structure and larger ones far from it. Near the structure more information 

is needed as most of the main phenomena happen there while the same information is not so 

relevant in further zones. 

In terms of velocity, continuity equation can be written as 

v୶,୧୬S୶,୧୬ − v୶,୭୳୲S୶,୭୳୲ + v୷,୧୬S୷,୧୬ − v୷,୭୳୲S୷,୭୳୲ = 0      (V-13) 
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Substituting the values of cross sections and velocities in the continuity equation 

S୶,୭୳୲ = S୶,୧୬ = y,  S୷,୭୳୲ = S୷,୧୬ = x      (V-14) 

v୶,୧୬ୀv
୧ା

౮ 

మ
,୨

= −κ୶

୦
౟శ
౮ 
మ

,ౠ
ି୦౟,ౠ

౮

మ

,  v୶,୭୳୲ = v
୧ି

౮ 

మ
,୨

= −κ୶

୦౟,ౠି୦
౟ష
౮ 
మ

,ౠ

౮

మ

, 

v୷,୧୬ = v
୧,୨ା

౯ 

మ

= −κ୷

୦
౟,ౠశ

౯ 
మ

ି୦౟,ౠ

౯

మ

,  v୷,୭୳୲ = v
୧,୨ି

౮ 

మ

= −κ୷

୦౟,ౠି୦
౟,ౠష

౯ 
మ

౯

మ

  (V-15) 

results 

−
୦

౟శ
౮ 
మ

,ౠ
ି୦౟,ౠ

౮

మಒ౮౯

+
୦౟,ౠି୦

౟ష
౮ 
మ

,ౠ

౮

మಒ౮౯

−
୦

౟,ౠశ
౯ 
మ

ି୦౟,ౠ

౯

మಒ౯౮

+
୦౟,ౠି୦

౟,ౠష
౯ 
మ

౯

మಒ౯౮

= 0      (V-16)  

Other definitions for these velocities could be chosen if employing the adjacent cells (as is 

common in numerical applications) but all would lead to the same numerical solutions for fine 

grid size. Each term of equation can be assumed to be an electrical current which we call 

jୖ౟శ∆౮ మ⁄ ,ౠ
=

୦౟,ౠି୦
౟శ
౮ 
మ

,ౠ

౮

మಒ౮౯

, jୖ౟ష∆౮ మ⁄ ,ౠ
=

୦
౟ష
౮ 
మ

,ౠ
ି୦౟,ౠ

౮

మಒ౮౯

, 

 jୖ౟,ౠశ∆౯ మ⁄
=

୦౟,ౠି୦
౟,ౠశ

౯ 
మ

౯

మಒ౯౮

 , jୖ౟,ౠష∆౯ మ⁄
=

୦
౟,ౠష

౯ 
మ

ି୦౟,ౠ

౯

మಒ౯౮

       (V-17) 

As the current and the potential variable are proportionally dependent, the electrical 

component that implements each term of the equation in the network model is a resistor 

(Ohm’s law). The four resistors are located in the elemental volume as presented in Figure 5.3. 

The resistance values are: 

R୧ା∆୶౟ ଶ⁄ ,୨ = R୧ି∆୶౟ ଶ⁄ ,୨ =
∆୶౟

ଶச౮∆୷ౠ
    R୧,୨ା∆୷ౠ ଶ⁄ = R୧,୨ି∆୷ౠ ଶ⁄ =

∆୷ౠ

ଶச౯∆୶౟
    (V-18) 

with ∆x୧ and ∆y୨ the lengths of the rectangular cell, which can vary according to the progressive 

reticulation. In isotropic soils where constant reticulation is used instead of progressive one, 

resistors values are the same.  
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Figure 5.3. Elemental circuit for problems of flow under dams 

In order to be able to know the water flow running through the elemental volume in both 

directions, zero voltage batteries are placed in one of the two branches of each direction. These 

batteries do not affect the results. Instead, they allow the code to read the value of current 

through them and, therefore, according to the electrical analogy, the value of the water flow.  

 

V.3 Flow in unconfined aquifers in steady state due to a pumping well 

In this problem, whose geometry is presented in Figure 5.4, the flow goes from the point of 

higher potential, placed at the aquifer border, to that of lower, which is imposed in the well. 

These scenarios are ruled by Equation (V-19) and boundary conditions Equations (V-20) to (V-

23).  
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Figure 5.4. Nomenclature of scenarios of well in unconfined aquifers 

κ୰
ଵ

୰

ப

ப୰
ቀr

ப୦

ப୰
ቁ + κ୸

பమ୦

ப୸మ = 0  (local balance equation)     (V-19) 

h୰ୀୖ,୸ୀ଴ିୌ = H  (constant water potential at the aquifer border / saturated thickness) (V-20) 

h୰ୀ୰౭,୸ୀ଴ି୦౭
= h୵  (constant water potential at the well border / well height)   (V-21) 

h୰ୀ୰౭,୸ୀ୦౭ିୌ = z  (constant water potential at the vertical border above the well)  (V-22) 

ப୦

ப୷౨స౨౭ష౎,౰సౄ
=

ப୦

ப୷౨స౨౭ష౎,౰సబ
= 0 (impervious border at the top and bottom borders of the aquifer) (V-23) 

The nomenclature is shown in Figure 5.5. To determine the value of the resistors involved in the 

network model of the cell, we start from the steady-state conservation equation:  

 
Figure 5.5. Nomenclature of the elemental volume for problems of flow in unconfined aquifers due to a pumping 

well 
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Q୰,୧୬ − Q୰,୭୳୲ + Q୸,୧୬ − Q୸,୭୳୲ = 0        (V-24) 

If expressing the water flow as the product of the velocity and the crossing section, the former 

equation can be written as  

v୰,୧୬S୰,୧୬ − v୰,୭୳୲S୰,୭୳୲ + v୸,୧୬S୸,୧୬ − v୸,୭୳୲S୸,୭୳୲ = 0      (V-25) 

Now, using Darcy’s law, this equation is transformed into  

v
୰ ୧ି

∆౨౟
మ

,୩
= −κ୰

୦౟,ౡି୦
౟ష

∆౨౟
మ

,ౡ

∆౨౟
మ

 , v
୰ ୧ା

∆౨౟
మ

,୩
= −κ୰

୦
౟శ

∆౨౟
మ

,ౡ
ି୦౟,ౡ

∆౨౟
మ

,  

  
v ୸ ୧,୩ି

∆౰ౡ
మ

= −κ୸

୦౟,ౡି୦
౟,ౡష

∆౰ౡ
మ

∆౰ౡ
మ

 , v
୸ ୧,୩ା

∆౰ౡ
మ

= −κ୸

୦
౟,ౡశ

∆౰ౡ
మ

ି୦౟,ౡ

∆౰ౡ
మ

       (V-26) 

Water flows with these velocities through the corresponding cell section crossing their 

boundaries, whose sections are calculated with the following formulae. For the radial velocity, 

this section changes from input to output due to cylindrical crown form of the cell while for the 

vertical velocity the input and output sections are the same.  

S୰,୭୳୲ = S
୧ି

∆౨౟
ర

,୩
= 2π ቀr୧,୩ −

∆୰౟

ସ
ቁ ∆z୩, S୰,୧୬ = S

୧ା
∆౨౟

ర
,୩

= 2π ቀr୧,୩ +
∆୰౟

ସ
ቁ ∆z୩ ,  

S୸,୧୬ = S୸,୭୳୲ = S
୧,୩ା

∆౰ౡ
ర

=  S
୧,୩ି

∆౰ౡ
ర

= π ൤ቀr୧,୩ +
∆୰౟

ଶ
ቁ

ଶ
− ቀr୧,୩ −

∆୰౟

ଶ
ቁ

ଶ
൨    (V-27) 

Different definitions for the velocities can be used if considering the adjacent cells, although all 

of them converge to the same solution for fine grid size. Equations (V-26) and (V-27) can be 

introduced in (V-25), leading to (V-28).  

−κ୰

୦౟,ౡି୦
౟ష

∆౨౟
మ

,ౡ

∆౨౟
మ

2π ቀr୧,୩ −
∆୰౟

ସ
ቁ ∆z୩ + κ୰

୦
౟శ

∆౨౟
మ

,ౡ
ି୦౟,ౡ

∆౨౟
మ

2π ቀr୧,୩ +
∆୰౟

ସ
ቁ ∆z୩ − κ୸

୦౟,ౡି୦
౟,ౡష

∆౰ౡ
మ

∆౰ౡ
మ

π ൤ቀr୧,୩ +
∆୰౟

ଶ
ቁ

ଶ

−

ቀr୧,୩ −
∆୰౟

ଶ
ቁ

ଶ

൨ + κ୸

୦
౟,ౡశ

∆౰ౡ
మ

ି୦౟,ౡ

∆౰ౡ
మ

π ൤ቀr୧,୩ +
∆୰౟

ଶ
ቁ

ଶ

− ቀr୧,୩ −
∆୰౟

ଶ
ቁ

ଶ

൨ = 0     (V-28) 

Each of the addends of the previous equation can be translated into an electrical current (j). In 

this way, we shall write  

j
ୖ୧ି

∆౨౟
మ

,୩
=

୦౟,ౡି୦
౟ష

∆౨౟
మ

,ౡ

∆౨౟

రಒ౨ಘ൬౨౟,ౡష
∆౨౟

ర
൰∆౰ౡ

 , j
ୖ୧ା

∆౨౟
మ

,୩
=

୦
౟శ

∆౨౟
మ

,ౡ
ି୦౟,ౡ

∆౨౟

రಒ౨ಘ൬౨౟,ౡశ
∆౨౟

ర
൰∆౰ౡ

 ,  

j
ୖ୧,୩ି

∆౰ౡ
మ

=
୦౟,ౡି୦

౟,ౡష
∆౰ౡ

మ
∆౰ౡ

మಒ౰ಘ൥൬౨౟,ౡశ
∆౨౟

మ
൰

మ
ష൬౨౟,ౡష

∆౨౟
మ

൰
మ

൩

 , j
ୖ୧,୩ା

∆౰ౡ
మ

=
୦

౟,ౡశ
∆౰ౡ

మ

ି୦౟,ౡ

∆౰ౡ

మಒ౰ಘ൥൬౨౟,ౡశ
∆౨౟

మ
൰

మ
ష൬౨౟,ౡష

∆౨౟
మ

൰
మ

൩

    (V-29) 
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Using Ohm’s law for each addend of the equation, the value of the resistors (which depend on 

the geometrical characteristics of the grid and the hydrogeological parameters of the scenario) 

are  

R
୧ି

∆౨౟
మ

,୩
=

∆୰౟

ସச౨஠ቀ୰౟,ౡି
∆౨౟

ర
ቁ∆୸ౡ

 , R
୧ା

∆౨౟
మ

,୩
=

∆୰౟

ସச౨஠ቀ୰౟,ౡା
∆౨౟

ర
ቁ∆୸ౡ

 ,  

R
୧,୩ି

∆౰ౡ
మ

= R
୧,୩ା

∆౰ౡ
మ

=
∆୸ౡ

ଶச౰஠൤ቀ୰౟,ౡା
∆౨౟

మ
ቁ

మ
ିቀ୰౟,ౡି

∆౨౟
మ

ቁ
మ

൨
       (V-30) 

For the two kind of problems studied along this thesis, the use of the continuity equation instead 

of the traditional approach represents some improvements. The most important ones are: 

- It is not necessary to carry out mathematical manipulations to obtain the values of water 

potential and flow, as they are those of voltage and current that can be measured 

straight from the circuit once the simulation is done.  

- Extra devices, such as current generators, are avoided, simplifying the calculations and, 

therefore, reducing the computational time.  

However, because of the specific nature of the problems of flow in unconfined aquifers due to 

the presence of pumping wells, another type of devices is necessary to simulate the scenarios in 

a correct way. These devices are switches, which connect or disconnect the cells according to a 

rule that has been previously established. When a drawdown happens, the area that loses water 

once the circuits have been solved (that is, the area which is above the final phreatic level), 

presents lower values of voltage than vertical coordinates, which would mean that the pore 

pressure in those points is negative. As no capillary fringe is being considered, these values are 

not possible, so the solution to avoid it in the post-simulation calculations is disconnecting these 

cells. Therefore, according to the position of the elemental volume in the scenario, switches  

have been located in different circuit branches. Nevertheless, despite their location, all switches 

work as follows: if the voltage in a given node is higher or equal to its z coordinate, the switch is 

closed, and the current is allowed to run through that branch; conversely, if its voltage is lower, 

then the switch opens, and the electrical current cannot run through that branch.  

The use of more or less ideal switches in the circuit computer codes currently employed 

broadens the possibilities of simulating this kind of models. When in the 1950s and before 

analogical simulators were used for modelling problems of groundwater flow in scenarios with 

‘free surfaces’, their contours could only be reproduced cutting the electrolytical paper along a 

line that was approximately considered as the free surface. The chance of obtaining this contour 
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in an automatic and accurate way employing switches has only been successfully carried out in 

this thesis, as far as we know.  

To conclude the structure of the circuit in which each elemental volume is transformed, other 

extra elements are introduced, although these do not affect the results. On the contrary, they 

are used to obtain valuable information from the circuits that could not be given in any other 

way. Although voltage values can be measured from any node of the simulated circuits without 

any specific device, this does not occur when current values are needed. For this reason, 

batteries of null voltage are placed in those branches in which electrical current values (and 

therefore water flow) have to be achieved. Figures 5.6 to 5.11 show the network models of the 

different elemental volumes that have been employed in this scenario. 

 
Figure 5.6. Scheme of a typical cell (central area of the scenario) 



Chapter V. Network models and the software DamSim and WaWSim 

157 
 

 
Figure 5.7. Scheme of a typical cell (central area bottom border) 

 
Figure 5.8. Scheme of a typical cell (well border) 
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Figure 5.9. Scheme of the well border- bottom border cell  

 
Figure 5.10. Scheme of a typical cell (aquifer vertical border) 
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Figure 5.11. Scheme of the cell aquifer vertical border-bottom border 

Figures 5.6 to 5.11 show the three different kind of switch behaviours that are employed in the 

designed code: 

- Switch 1 (Sw (1)). This device controls the vertical branch closer to the floor border. For 

an i,k cell, it keeps closed as long as the voltage in the central node of the cell which is 

right below it (i,k-1) is higher than its vertical position, zi,k-1. This means that the voltage 

in this lower cell is higher than its position, so it is saturated and water flow can be 

developed. Nevertheless, when the voltage in the central node of this lower cell is not 

as high as the vertical position, then the studied cell is considered as dry and water 

cannot run downwards, which is simulated by opening the switch. As the cells that form 

the bottom border do not have any other elemental volumes below them, switches are 

not placed in their vertical lower branches.  

- Switch 2 (Sw (2)). It governs the horizontal branch closer to the aquifer border. 

Considering an i,k cell, this switch is closed when the voltage at the central node of the 

cell on its right (i+1,k) is higher than its vertical position. According to this, the cell is 

being simulated as saturated, allowing horizontal flow. If the voltage in this adjacent cell 

presents a value that is lower than its vertical position, this cell is considered as dry, 

which is simulated with an open switch, and then no horizontal flow can occur. Those 
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cells defining the aquifer border do not present this switch, as no elemental volumes 

are modelled on their right.  

- Switch 3 (Sw (3)). This one is only employed in those cells modelling the well border. It 

is close when the voltage value in the central node of cell i,k is higher than its vertical 

position, and it is open when the contrary happens. This mechanism is needed in order 

to correctly simulate the seepage surface.  

In any case, despite the three types of switch are governed by different nodes, they behave in a 

similar way, and, for this reason, the same structure is used to control them (Figure 5.12): 

(i) The switch measures the voltage value in an auxiliary node placed outside the 

principal circuit. A non-linear dependent voltage source is connected to this auxiliary 

node, as well as a resistor with a resistance value of one (in this way, according to 

Ohm’s law, the current has the same value as the voltage). Both the source and the 

resistor are connected to ground node, closing the circuit. 

(ii) A value must be given to the non-linear dependent voltage source. In this case, is 

the ratio of the values controlling the switch: the voltage and the vertical position 

of the node in which the comparison is being done. 

(iii) When the ratio is higher than one, the voltage is then higher than the vertical 

position of the studied node. The switch must be close according to this, allowing 

the current to flow. If this ratio is lower than one, the voltage value is lower than 

the vertical position (negative pore pressure), so the switch is open in order to avoid 

the flowing current.  

(iv) A hysteresis value is considered as a mean to set the precision of the switch 

measure. The lower this value is, the more precise the transition from open to close 

is (and vice versa).  

 
Figure 5.12. Auxiliary circuit for controlling switches  
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V.4 Boundary conditions 

Two different kind of boundary conditions are used: constant water potential values and 

impervious borders. For flow under gravity dams, these conditions can be written as: 

h୳୮ୱ୲୰ୣୟ୫ ୢୟ୫ = hଵ; hୢ୭୵୬ୱ୲୰ୣୟ୫ ୢୟ୫ = hଶ  (first class of Dirichlet condition)  (V-31) 

ப୦

ப୬୧୫୮ୣ୰୴୧୭୳ୱ ୭୳୲ୣ୰ ୠ୭୰ୢୣ୰ୱ
=

ப୦

ப୬୧୫୮ୣ୰୴୧୭୳ୱ ୱ୲୰୳ୡ୲୳୰ୣ ୠ୭୰ୢୣ୰ୱ
= 0  

(second class or Neumann condition)  (V-32) 

In the study of flow in unconfined aquifers, although the same kinds of boundary condition are 

set, these are not located in the same place and do not present the same values.  

hୟ୯୳୧୤ୣ୰ ୠ୭୰ୢୣ୰ = H; h୵ୣ୪୪ ୠ୭୰ୢୣ୰ = h୵;  hୠ୭୰ୢୣ୰ ୟୠ୭୴ୣ ୵ୣ୪୪ = z  
(first class or Dirichlet condition)  (V-33) 

ப୦

ப୸౫౦౦౛౨ ౟ౣ౦౛౨౬౟౥౫౩ ౘ౥౨ౚ౛౨
=

ப୦

ப୸ౢ౥౭౛౨ ౟ౣ౦౛౨౬౟౥౫౩ ౘ౥౨ౚ౛౨
= 0      

(second class or Neumann condition)   (V-34) 

There is an extra border in these problems, however, that cannot be modelled before carrying 

out the simulations. This is the phreatic level, which must be considered as an unknown of the 

problem, since it appears when those points of null pore pressure (h=z) are connected. 

Depending on the boundary condition that is being modelled, different electrical devices are 

used.  

First class boundary conditions, this is, imposing a specific value to a node (usually the central 

node of the border cell), is simulated by connecting this node to a battery that provides a voltage 

of that value. This does not vary whether the value is the same along the whole boundary or 

each cell must have a different one. The device can be given the correct value employing the 

code.  

In this way, on the one hand, providing the constant potential values in the upstream and 

downstream horizontal borders of the dam problems is as easy as connecting all the cells along 

those borders to batteries with values h1 and h2 respectively. On the other hand, the well border 

must be divided into two different zones. One zone in which, as happened in the first problem, 

all cells are connected to batteries of the same voltage value, which would be the well height. 

Another zone where the border cells are connected to a battery whose voltage value is the 

vertical position of its central node, which is the border above the well. Figure 5.13 shows the 
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boundary conditions of an arbitrary problem of flow under dams, while Figure 5.14 does the 

same for problems of flow in unconfined aquifers due to pumping wells.  

 
Figure 5.13. Devices for the boundary conditions in problems of flow under dams 

 
Figure 5.14. Devices for the boundary conditions in problems of flow in unconfined aquifers due to a pumping well 

 

V.5 Structure of the model text file  

The corresponding file is generated following the rules of Ngspice software. It can be organized 

in different sections according to the information that is introduced or the process or calculation 
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that is carried out. The first section of the file shows the name and parameters that must be 

introduced in order to simulate the chosen scenarios. Section 2 presents the structure of the 

cells that are used to model the problem, while Section 3 stablished the boundary conditions of 

the scenario. Finally, Section 4 is a list of the required variables, which are the raw data for 

calculating the sought results. The text file finishes with an ‘end’ sentence. Figures 5.15 to 5.18 

are an example of the different sections in which the file is organized.  

 
Figure 5.15. Section 1 in a Ngspice file generated by DamSim 

 
Figure 5.16. Example of the structure of two cells in Section 2 
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Figure 5.17. Example of part of the list of boundary conditions 

 
Figure 5.18. Example of part of the list of the required variables 

In order to automatically elaborate the text file, we have developed a couple of Matlab codes 

(one for each kind of scenarios that have been studied along this thesis) for the following tasks: 

i) windows for introducing the geometrical and hydrogeological parameters of the 

scenario, 

ii) automatic generation of nodes and devices, 

iii) elaboration of the complete text file for the network model, 

iv) ‘start’ routine and simulation model in Ngspice, 

v) graphical and numerical results in Matlab. 

One of them, DamSim, simulates problems of flow through porous media under gravity dams. 

These structures may present a foundation or not, and there is also the option to locate a sheet 

pile under it. Moreover, the modelled soil can be isotropic or anisotropic, in order to reflect the 

conductivity of the media in a realistic way.  
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The code is able to obtain the groundwater flow, pore pressure distribution or average exit 

gradient. In addition, the flow net is the main graphical solution, where isopotential lines and 

streamlines are shown, helping to understand the behaviour of the flow.  

The second software , WaWSim, simulates flow in unconfined aquifers due to a pumping well 

and has also been developed employing Matlab and Ngspice. In this case, the numerical 

solutions are groundwater flow and seepage surface, and the graphical result is also a flow net, 

although this also presents iso-pressure lines.  

 

V.6 Data post-processing and result obtaining  

After printing the results in text files with Ngspice (.data extension), Matlab closes the software 

and imports the voltage and current values. Following some rules and programming the 

necessary routines, the raw data are organized in arrays and matrixes. Finally, we can calculate 

the numerical and plot the graphical results.  

Depending on the scenario being simulated, the final solutions would vary, although all the 

calculations employ the values of water head (and sometimes those of water flow) in the nodes 

of the cells in which the scenario has been discretized. In this way, the common results are water 

flow and flow net, while in scenarios of flow under dams other results are also pore pressure 

distribution under the dam (which can be summarized as the uplift force and its application 

point) and the average exit gradient. Furthermore, if there is a sheet pile at the dam base, then 

other solutions are the pore pressure distribution along the sheet pile in its upstream and 

downstream side (these again can be summarized as a force and its application point). Finally, 

scenarios of flow in unconfined aquifers due to a pumping well, apart from the water flow and 

the flow net, seepage surface is another result.  

 

V.7 DamSim and WaWSim  

These two software use Ngspice (free software for solving electric circuits) as their 

computational code, and Matlab as the tool to program files, communication interface and 

result presentation. With simple graphic interfaces, the user can introduce the geometric and 

physical soil properties, the initial water head variation and the reticulation of the scenario. Once 

the calculation is finished, any of the two software allows knowing different results, either 

numerical or graphical. 
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For DamSim, Figure 5.19 shows the nomenclature for the scenarios of flow under gravity dams. 

If no sheet pile is considered, then those parameters related to it (length ds and position under 

the base cs) take a value of 0, while if there is not a foundation, the value of its length (d) must 

also be 0. On the other hand, Figure 5.20 presents the nomenclature for WawSim.  

 
Figure 5.19. Nomenclature for DamSim 

 
Figure 5.20. Nomenclature for WaWSim 

The software organization and structure have been designed so the user has a useful tool that 

can be employed in a simple way.  
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V.7.1 Data introduction 

The first step in both software is to introduce the data to model the chosen scenario (input 

information). In both codes, these parameters are entered using a window in which geometric 

and hydrogeological parameters must be written. In DamSim, input window varies depending 

on the scenario we intend to simulate (Figure 5.21, initial interface where the user chooses the 

scenario to simulate, no sheet piles or one sheet pile), since the parameters that define the 

position and length of the sheet pile must not appear if it is not going to be simulated. Moreover, 

in this window the number of cells for each of the lengths is also introduced. There is a 

‘Verification’ push button, so the code can check if all these data are coherent, as well as a 

‘Simulation’ push button to start running the simulation. Figures 5.22 and 5.23 show the window 

for the data input when no sheet piles is modelled and when one is located under the dam, 

respectively.  

 
Figure 5.21. Initial window of DamSim 



Chapter V. Network models and the software DamSim and WaWSim 

168 
 

 
Figure 5.22. Data input window for scenarios of flow under dam without a sheet pile 

 
Figure 5.23. Data input window for scenarios of flow under dams with a sheet pile 

In the input windows, some error banners or messages are programmed in order to ensure that 

data are correct values (for example, letters or negative values cannot be written, most variables 

cannot be given a value of zero, and the number of cells cannot be a decimal value). Moreover, 

once all data have been written, the ‘Verification’ button must be pressed, and then the whole 

scenario is checked to see if all data are compatible. For instance, the value of the water head 
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upstream the dam must be higher than that downstream, the vertical length of the whole 

impervious structure (d or d+ds) must be lower than the stratum thickness, and the position of 

the pile under the dam cannot take a larger value than that of the dam width. In addition, a 

different error appears when the user has chosen to simulate a scenario of flow under a dam 

with a sheet pile but then they give a value of zero to ds, indicating that a sheet pile is not 

modelled. In this case, the error message explains that the software should be restarted, and 

the user should choose the option of ‘dam without a sheet pile’. Finally, the ‘Verify’ button gives 

the user information about the type of soil that the user has introduced. If both values of 

hydraulic conductivity are the same, a message appears explaining that the soil is isotropic, while 

if both values are different but the vertical conductivity is higher than the horizontal 

conductivity, then another message is shown, although in this case it explains that it is an 

uncommon fact.  

Once the simulation has been carried out, a second window appears where the user can choose 

which graphical and numerical solutions are wanted to be shown (output information). Figure 

5.24 shows this ‘Result’ window for the scenario of dam without a sheet pile, as it is very similar 

to that of the scenario of flow under dams with a sheet pile.  

 
Figure 5.24. Example of result window 

 

V.7.2 Numerical simulations. Post-process results 

Ngspice, has been chosen because it leads to almost exact solutions and whose errors are only 

due to the chosen reticulation. Solutions are obtained with low computation times. The text file 

for the model, elaborated with Matlab, is designed following the network method. These text 

files (.cir extension) are sent to Ngspice for their simulation. The typical file is the one that has 
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been displayed in Figures 5.15 to 5.18 since it is based on the same codes. The solutions for all 

the chosen variables are the raw data and they are printed in text files, and when this task is 

finished, Matlab closes Ngspice and import the output files. In this way, all these data can be 

arranged into arrays and matrixes for mathematical calculations and graphical representations.  

The different windows that correspond to the software WaWSim are not shown in this 

dissertation, since the objective with this second code is also to introduce the model for 

transient flow in unconfined aquifers due to a pumping well. However, it would probably have 

a similar appearance.  

 

V.7.3 Graphical solutions  

Depending on the chosen software different graphical outputs are expected and can be chosen 

by the user. For any of the chosen scenarios that can be simulated with the two software, a flow 

net can be displayed if the user demands it.  

DamSim also elaborates pore pressure distribution graphics since the problems that this code 

simulates have impervious structures where the pore pressure is applied. If no sheet pile is 

considered, there is only one output graphic solution apart from the flow net, which shows the 

pore pressure distribution under the dam base. On the other hand, if a sheet pile must be 

modelled, a third graphic can be displayed, one where the pore pressure distribution along the 

sheet pile is shown for both sides of it (upstream and downstream).  

Examples of a flow net, pore pressure distribution under the dam and pore pressure 

distributions along the sheet pile are shown in Figures 5.25, 5.26 and 5.27 respectively.  
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Figure 5.25. Example of flow net graphic for a scenario of flow under dam without a sheet pile (1V:10H) 

 
Figure 5.26. Example of pore pressure distribution in problems of flow under dam with a sheet pile 
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Figure 5.27. Example of pore pressure distributions along the sheet pile in problems of flow under dam with a sheet 

pile 
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Chapter VI. An application of inverse problem: a 

protocol to obtain hydraulic properties in 

unconfined aquifers with pumping well 

 

 

Employing the protocol of inverse problem we determine the horizontal and vertical hydraulic 

conductivities from direct measures of pumping flow rate and seepage surface. Section VI.1 is 

an introduction to the inverse problem, while Sections VI.2 and VI.3 present two alternative 

methods for solving this problem. Finally, Section VI.4 shows as an application in which the 

influence of errors in the value of water flow and seepage measures on the solutions of hydraulic 

conductivities is studied.  

 

VI. 1 Introduction of the inverse problem 

Once we have characterized the problem of flow through porous media corresponding to 

unconfined aquifers where water is abstracted from a pumping well, a universal solution for the 

variables of interest, that is, water flow (Q) and seepage surface (hs) has been stablished. Both 

are function of the problem parameters: aquifer radius (R), well radius (rw), initial saturated 

thickness and hydraulic conductivities in the horizontal (κr) and vertical (κz) direction. In the 

inverse problem, Q and hs are data, which are obtained from experimental measures affected 

by the error inherent to the measure instruments, and κr and κz become the unknowns. The 
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inverse problem can be approached either by a classical way, from successive numerical 

simulations, or by the use of the universal curves from Chapter IV.  

 

VI.2 Inverse problem with the network method  

We start this study with the solution of the inverse problem in a classical way, (Beck et al. [1985], 

Zueco & Alhama [2005, 2006, 2007]), employing as numerical tool the code developed in this 

thesis (WaWSim).  

After carrying out numerous simulations for obtaining the universal curves in Chapter IV, we 

could see that horizontal hydraulic conductivity essentially determines the value of groundwater 

flow. Significant changes in the vertical conductivity lead to variations of around 2% in the 

pumping flow value. This verification simplifies the inverse problem, since it allows calculating 

first the radial (horizontal) hydraulic conductivity from the water flow value, and once this 

conductivity has been estimated, we can then approximately determine the vertical hydraulic 

conductivity that leads (by iterations) to the empirical seepage surface value. The inverse 

problem requires a large number of numerical simulations for which a protocol must be 

stablished to change the estimate parameters until the results converge to an acceptable 

approximation. These simulations are organized in two groups: the first for the calculation of 

the horizontal conductivity, and the second for the vertical conductivity. 

The first group of iterations consists of a non-defined number of loops in which the real water 

flow is compared to that obtained from the simulations. In each iteration, the value of the 

horizontal hydraulic conductivity is changed. The estimated horizontal conductivity is 

considered as accurate enough if the deviation for the water flow variable, Equation (VI-

1), presents a value between 0.01 and -0.01,  

୕ =
୕౨౛౗ౢି୕౩౟ౣ

୕౨౛౗ౢ
          (VI-1) 

Before starting the iterations, we must assign an initial value for the radial hydraulic 

conductivity, which is estimated according to the knowledge we have about the soil (its 

geological nature, porosity, grain size, etc), from previous experience, field or laboratory test, or 

employing ground engineering manuals. If doing so, the compilation time would be reduced, 

since the number of iterations is lower as the initial value is closer to the real one. In any case, 

the code always leads to a solution (always the same one), independently of the initial value of 

the radial hydraulic conductivity. Moreover, most engineering manuals provide estimations of 
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isotropic hydraulic conductivities, which may also lead to longer compilation time if those values 

are introduced for horizontal and vertical conductivities.  

In the first loop, the changes of κr in each iteration are calculated as ఑ೝ,೔೙೔೟೔ೌ೗

ଵ଴
 or ఑ೝ,೔೙೔೟೔ೌ೗

ଵ଴భ . If the 

conductivity of the simulation is lower than the real (or expected), the deviation value would be 

higher than zero, and the opposite would happen if the simulation conductivity is higher than 

the real value. When the deviation is higher than zero, the calculated increment would be added 

to the last calculated conductivity, and it would be subtracted if it is lower. The current loop 

finishes one of the following cases happens:  

a) Deviation is positive in the second last iteration and negative in the last, but in none of 

the iterations their value is between 0.01 and -0.01.  

b) Deviation is negative in the second last iteration and positive in the last, but in none of 

the iterations their value is between 0.01 and -0.01. 

c) Deviation is between 0.01 and -0.01 in the last iteration.   

In case c) there will not be a following loop, and the solution of κr is the value from the last 

iteration. The inverse problem for κr would be solved.  

If cases a) or b) happen, a second loop begins using the second last radial conductivity from the 

previous loop. If case a) happens, an increment is added, which in the second loop takes a value 

of ఑ೝ,೔೙೔೟೔ೌ೗

ଵ଴଴
 or ఑ೝ,೔೙೔೟೔ೌ೗ 

ଵ଴మ ; if case b) occurs, then the increment is subtracted. The second loop works 

in the same way as the first, and if the deviation, ΓQ does not reach a value between 0.01 and -

0.01, a third loop begins, where ఑ೝ,೔೙೔೟೔ೌ೗

ଵ଴଴଴
 or ఑ೝ,೔೙೔೟೔ೌ೗ 

ଵ଴య ; looping process will continue until the 

deviation takes the sought value. In each loop, the value of the increment is calculated as 
఑ೝ,೔೙೔೟೔ೌ೗ 

ଵ଴೙ , where n is the number of the loop that is in progress. Figure 6.1 shows the flowchart 

for this first part of the protocol for the inverse problem. 
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Figure 6.1. Flow chart for the first part of the protocol (calculation of κr) 

Once the horizontal hydraulic conductivity has been estimated, the protocol starts the second 

group of simulations for calculating the vertical conductivity. In this case, the number of loops is 

also undetermined and in each simulation the deviation for the seepage variable, Γhs, is 

calculated as  

Start

𝐑, 𝐫𝐰, 𝐇, 𝐡𝐰,

𝐐𝐫𝐞𝐚𝐥, 𝐡𝐬,𝐫𝐞𝐚𝐥

𝛋𝐫,𝐢𝐧𝐢, 𝛋𝐳,𝐢𝐧𝐢

𝐐𝐬𝐢𝐦, 𝚪𝐐

𝚪𝐐 = [𝟎. 𝟎𝟏, −𝟎. 𝟎𝟏]
No Yes Next 

part (1)𝛋𝐫,𝐢 =  𝛋𝐫,𝐢𝐧𝐢

𝐧 =  𝟏 ∆𝛋𝐫=  
𝛋𝐫,𝐢𝐧𝐢

𝟏𝟎𝐧

𝚪𝐐 > 𝟎. 𝟎𝟏
No Yes

𝛋𝐫,𝐢 =  𝛋𝐫,𝐢 − ∆𝛋𝐫

𝐐𝐬𝐢𝐦, 𝚪𝐐

𝚪𝐐 < −𝟎. 𝟎𝟏

Yes

No

𝚪𝐐 > 𝟎. 𝟎𝟏

𝛋𝐫,𝐢 =  𝛋𝐫,𝐢 + ∆𝛋𝐫

𝐧 = 𝐧 +  𝟏

Yes

𝛋𝐫,𝐢 =  𝛋𝐫,𝐢 + ∆𝛋𝐫

𝐐𝐬𝐢𝐦, 𝚪𝐐

𝚪𝐐 > 𝟎. 𝟎𝟏

Yes

No

𝚪𝐐 < −𝟎. 𝟎𝟏

𝛋𝐫,𝐟𝐢𝐧 =  𝛋𝐫,𝐢

𝛋𝐫,𝐟𝐢𝐧 =  𝛋𝐫,𝐢𝐧𝐢

Next 
part (1)

No No

𝛋𝐫,𝐢 =  𝛋𝐫,𝐢 − ∆𝛋𝐫

𝐧 = 𝐧 +  𝟏

Yes
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Γ୦ୱ =
୦౩,౨౛౗ౢି୦౩,౩౟ౣ

୦౩,౨౛౗ౢ
          (VI-2) 

Due to the sensitivity of the problem for the variable of seepage surface and how it is related to 

the vertical hydraulic conductivity, the range of values of the deviation for which the simulation 

is accepted is more accurate: now it must be between 0.001 and -0.001. As for the study of the 

radial conductivity, we must assign an initial value to the vertical hydraulic conductivity. We can 

adopt the same initial value as for κr or, alternatively, one of the following options can be chosen: 

i) κz, initial takes the value of κr, final, so the soil is initially considered as isotropic; ii) κz, initial takes a 

fraction of κr, initial or κr, final (for example, a fifth or a tenth), since the vertical conductivity is 

commonly lower than the horizontal one; or iii) κz, initial is directly introduced by the user, 

although it can also meet some of the previous criteria.  

The seepage surface behaves different than the water flow. In order to increase the seepage 

surface, the vertical hydraulic conductivity must be decreased, so in each iteration the radial 

flow becomes more important. The contrary happens if the seepage surface must be reduced in 

the following iteration. 

In the first loop for calculating κz, if the deviation is higher than zero, which means that the 

simulated seepage surface is lower than the real value, the vertical hydraulic conductivity is 

decreased subtracting the increment ఑೥,೔೙೔೟೔ೌ೗

ଵ଴
=

఑೥,೔೙೔೟೔ೌ೗

ଵ଴భ . The opposite occurs when the deviation 

takes a value lower than zero. As happened in the calculation of the horizontal conductivity, the 

loop finishes with one of the following ends:  

a) Deviation is positive in the second last iteration and negative in the last iteration, but in 

none of the iterations their value is between 0.001 and -0.001.  

b) Deviation is negative in the second last iteration and positive in the last iteration, but in 

none of the iterations their value is between 0.001 and -0.001.  

c) Deviation takes a value between 0.001 and -0.001 in the last iteration.  

In case c) this loop would be the last one, and the solution of κz is the value calculated in the last 

iteration. If cases a) or b) occur, the following loop begins, starting with the conductivity value 

of the second last iteration in the previous loop. If case a) happens, a second loop starts, and 

the increment that now is subtracted takes a value of ఑೥,೔೙೔೟೔ೌ೗ 

ଵ଴଴
=

఑೥,೔೙೔೟ೌ೗

ଵ଴మ . The opposite occurs in 

case b). The second loop finishes as the first one, and there would be the required number of 

loops for finding a value of the vertical hydraulic conductivity that leads to an error value in the 

chosen range. In each loop, the value of the increment would be ఑೥,೔೙೔೟ೌ೗

ଵ଴೙ , where n is the number 

of the loop that is ongoing. Figure 6.2 shows the flow chart for the second part of the protocol. 
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Figure 6.2. Flow chart for the second part of the protocol (calculation of κz) 

Due to the complexity of the problem, convergence is not always possible for all the 

discretization, since there is a correlation between the values of the simulated conductivities 

and the reticulation that leads to a solution. In addition, the designed code shows an error based 

on the difference between the values of seepage surface calculated by water head and by 

pressure. When employing the water head, we look for the point of the well wall where this 

variable takes the same value as the vertical position. On the other hand, when measuring the 
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seepage surface using the pore pressure, we would look for the point of 0 kPa. As following 

these two methodologies can lead to wrong values of seepage surface, the code looks for the 

point of 0.1 kPa pressure value. Of course, the seepage surface value calculated with this method 

is lower than the real, but when the code calculates correctly this variable by the values of the 

water head, the seepage surfaces obtained with the two methodologies are very close (with 

difference around 5 %). If the difference is higher than 10%, the code shows an error and finishes 

although a solution has not been reached.  

It is also possible, in problems of high values of vertical hydraulic conductivity and/or low 

seepage surface values, that these two variables cannot be related in an accurate way, so 

estimated value of the vertical conductivity must be considered as an approximation.  

 

VI.3 Inverse problem with the universal abaci 

Studying the inverse problem with the dimensionless curves is simpler, since we can benefit 

from numerous simulations previously carried out to plot these curves (Section IV-2.4). In this 

way, obtaining the sought parameters is more direct, since the fact of separating the calculation 

of the two conductivities simplifies the problem.  

The monomials governing the direct problem (Section IV-2.4) cluster both kind of parameters of 

the problem (geometric and hydrogeological). These are: 

πଵ = ට
ச౨

ச౰

ୌ

ୖ
          (IV-72) 

πଶ =
୰౭

ୖ
           (IV-71)  

πଷ =
୦౭

ୌ
           (IV-73) 

The unknown monomials were also obtained in Section IV-2.4:  

π୕ =
୕

ச౨
ౄష౞౭
౎ష౨౭

ଶ஠ୖୌ
          (IV-77) 

π୦౩
=

୦౩ି୦౭

ୌ
           (IV-78) 

If we use the same then the data monomials or the monomials governing the scenario are π2, π3 

and πhs, while the monomials with unknown variables are π1 and πQ. Since the abacus where the 

water flow monomial with the data groups (Figure 4.59) shows that π1 does not affect it, we can 
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obtain πQ from π2 and π3. From the obtained value, we can estimate  the value for the radial 

hydraulic conductivity, κr. 

Once the horizontal conductivity has been obtained (with a deviation lower than 2%, according 

to the results obtained when plotting Figure 4.59), we look for the vertical hydraulic conductivity 

value from the dimensionless abacus for the seepage surface (4.60). In this case, for each value 

of π1 there is a set of four curves at maximum (one for each value of π2 that has been simulated, 

if some or all of them cannot be summarized in one due to their similarity). Each of these curves 

relates πhs and π3. In this way, although the value of π1 is still unknown, as we do know those of 

π2, π3 and πhs, we can find the point of the abacus that corresponds to the sought value of π1. 

Since we already know the value of κr, the only unknown involved in the definition of π1 is the 

vertical hydraulic conductivity, κz.  

 
Figure 4.59. Dimensionless groundwater flow 
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Figure 4.60. Dimensionless seepage surface 

Therefore, the inverse problem is solved with two simple steps and easy mathematical 

calculations.  

 

VI.4 Inverse problem application  

As an example, the scenario that is going to be employed for the verification has the following 
data (see Figure 4.57): 

 H = 10 m 
 hw = 5 m 
 R = 10 m 
 rw = 1m 
 Q = 0.002308 m3/s 
 hs = 8.471 m 
 κr = 0.0000225 m/s 
 κz = 0.00001 m/s 

The value of the hydraulic conductivities indicates that the soil of the aquifer can be defined as 

a coarse sand. Moreover, its anisotropy degree is not very high (఑ೝ

఑೥
= 2.25), as this ratio can 

actually present value of 100 in average soils, or even larger (Custodio & Llamas [1976]). If we 

consider an anisotropy degree range between 1 and 100, the ratio ு
ோ

 takes then a value between 

0.001 and 30 when applying monomial π1 shown in Figure 4.60. The value of 30 seems quite 
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unlikely to occur, but as the conductivity ratio can take higher values than those in the chosen 

range, these high values of π1 were simulated.  

 

VI.4.1 Application employing the dimensionless curves  

Supposing that we do not know the values of the hydraulic conductivity, the monomials we can 

calculate are: 

πଶ =
୰౭

ୖ
=

ଵ

ଵ଴
= 0.1         (VI-3) 

πଷ =
୦౭

ୌ
=

ହ

ଵ଴
= 0.5          (VI-4) 

π୦ୱ =
୦౩ି୦౭

ୌ
=

଼.ସ଻ଵିହ

ଵ଴
= 0.347       (VI-5) 

From π2 and π3, employing the abacus in Figure 4.59 we see that the value of the monomial πQ 

is 0.295. From Equation IV-77 we can calculate κr as follows: 

κ୰ =
୕

஠్
ౄష౞౭
౎ష౨౭

ଶ஠ୌୖ
=

଴.଴଴ଶଷ଴଼

଴.ଶଽହ·
భబషఱ

భబషభ
·ଶగ·ଵ଴·ଵ଴

= 0.0000224 𝑚/𝑠    (VI-6) 

Once we know this value, we can calculate the error percentage, as show in Equation (VI-7).  

ச౨,౨౛౗ౢିச౨,ౙ౗ౢ

ச౨,౨౛౗ౢ
100% =

଴.଴଴଴଴ଶଶହି଴.଴଴଴଴ଶଶସ

଴.଴଴଴଴ଶଶହ
· 100% = 0.44%    (VI-7) 

Knowing the value of κr allows us to calculate κz from the abacus in Figure 4.60, since employing 

it and the values of πhs, π2 and π3 we see that monomial π1 takes a value of 1.5. From this, we 

calculate κz in the following way: 

κ୸ =
ச౨

஠భ
మ

ୌమ

ୖమ =
଴.଴଴଴଴ଶଶସ

ଵ.ହమ

ଵ଴మ

ଵ଴మ = 0.00000996 𝑚/𝑠     (VI-8) 

The error for this variable can be calculated according to Equation (VI-9).  

ச౰,౨౛౗ౢିச౰,ౙ౗ౢ

ச౰,౨౛౗ౢ
100% =

଴.଴଴଴଴ .଴଴଴଴଴ଽଽ଺

଴.଴଴଴଴ଵ
· 100% = 0.4%     (VI-9) 

We observe that, in both cases, the error is much lower than 1%, which shows the reliability of 

the methodology.  

Next, a brief study of the effect of possible measure errors may have on the resolution of the 

problem is carried out. For this, a statistical random error is applied to the real values of Q and 

hs, ξ (±0.5, 1, 1.5 and 2%), which leads to a set of experimental values, Qξ and hs,ξ. From these 

measures we calculate the deviation associated to each of the chosen ξ. These results are shown 
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in Figures 6.3 (with statistic errors of the same mathematical sign) and 6.4 (with statistic errors 

of the opposite mathematical sign), and Tables 6.1 and 6.2 (as happened in Figures 6.3 and 6.4).  

Table 6.1. Maximum errors of κr and κz as a function of ξ (dimensionless curves). Same sign 

Error ξ (%) κr ·10-5 (m/s) Max Error κr (%) κz ·10-5 (m/s) Max Error κz (%) 
0 2.24 0.44 0.996 0.40 

0.5 2.23/2.25 0.89 1.060/1.000 6.05 
1 2.22/2.26 1.33 1.100/0.910 9.94 

1.5 2.21/2.28 1.78 1.150/0.860 15.04 
2 2.20/2.29 2.22 1.190/0.820 19.47 

 

Table 6.2. Maximum errors of κr and κz as a function of ξ (dimensionless curves). Different sign 

Error ξ (%) κr ·10-5 (m/s) Max Error κr (%) κz ·10-5 (m/s) Max Error κz (%) 
0 2.24 0.44 0.996 0.40 

0.5 2.23/2.25 0.89 1.07/0.99 7.02 
1 2.22/2.26 1.33 1.12/0.89 11.92 

1.5 2.21/2.28 1.78 1.19/0.84 18.69 
2 2.20/2.29 2.22 1.24/0.78 24.36 

 

 
Figure 6.3. Maximum deviation of κr and κz as a function of ξ (dimensionless curves). Same sign 
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Figure 6.4. Maximum deviation of κr and κz as a function of ξ (dimensionless curves). Different sign 

We can see how, for statistic random errors up to 2%, the deviation in the estimation of the 

vertical hydraulic conductivity can reach values between 20 and 25%, while for the horizontal 

conductivity, this is reduced to 2%. The high deviation for the vertical conductivity is due to, 

essentially, the error affecting the horizontal conductivity and to the seepage surface. For this 

reason, in Tables 6.1 and 6.2 apart from the errors, we also show the values of the conductivities, 

so we can appreciate the difference with the real value.  

 

VI.4.2 Application employing WaWSim  

In this case, before starting the simulations, initial values of the conductivities for the modelled 

aquifer have been chosen from a manual. According to Custodio & Llamas [1976], a coarse sand 

usually presents a hydraulic conductivity between 0.005 and 0.00001 m/s. These are for an 

isotropic soil, but since the flow is predominantly radial, we consider this range for the horizontal 

component. Finally, a value of κr of 0.0001 m/s is selected and the initial vertical conductivity is 

0.00005 m/s.  

When studying the error, we have to consider that, apart from the deviation due to the inverse 

problem itself (as shown in VI.4.1 with the dimensionless curves), the protocol requires an error 

range to end with the simulations and come up with a solution. Therefore, we can expect a larger 

deviation due to the statistic error.  
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Firstly, the hydraulic conductivities are calculated introducing the real values of Q and hs, which 

are 0.002308 m3/s and 8.471 m respectively. Once the simulations have been carried out, the 

following results are obtained: 

κr = 0.0000224 m/s 
κz = 0.0000096m/s 

The deviations for each of the parameters calculated with the inverse problem are obtained 

according to Equation (VI-10) and (VI-11).  

ச౨,౨౛౗ౢିச౨,౩౟ౣ

ச౨,౨౛౗ౢ
100% =

଴.଴଴଴଴ଶଶହି଴.଴଴଴଴ଶଶସ

଴.଴଴଴଴ଶଶହ
· 100% = 0.44%     (VI-10) 

ச౰,౨౛౗ౢିச౰,౩౟ౣ

ச౰,౨౛౗ౢ
100% =

଴.଴଴଴଴ଵି଴.଴଴଴଴଴ଽ଺

଴.଴଴଴଴ଵ
· 100% = 3.75%    (VI-11) 

We see, studying these results, that the accuracy for the calculation of the horizontal hydraulic 

conductivity is similar employing the code or the dimensionless curves, while for the vertical 

conductivity, the deviation is higher with the code (3.75%) because it combines the deviation of 

the horizontal conductivity and the error in the protocol (deviation range between 0.001 and -

0.001).  

Once we know the deviations of the inverse problem, a statistic error is applied to the measured 

variables, Q and hs, and we can see how this affects to the hydraulic conductivities, in the same 

way it was done in section VI.4.1. The results of the conductivities and the deviations are shown 

in Tables 6.3 and 6.4, while the errors are also presented in Figures 6.5 and 6.6.  

Table 6.3. Maximum errors of κr and κz as a function of ξ (numerical simulation). Same sign 

Error ξ (%) κr ·10-5 (m/s) Max Error κr (%) κz ·10-5 (m/s) Max Error κz (%) 
0 2.24 0.44 0.96 3.75 

0.5 2.25/2.23 0.88 0.87/1.00 12.99 
1 2.26/2.20 2.22 0.86/0.99 14.45 

1.5 2.27/2.20 2.22 0.80/1.08 20.00 
2 2.30/2.20 2.22 0.77/1.15 22.73 

 

Table 6.4. Maximum errors of κr and κz as a function of ξ (numerical simulation). Different sign 

Error ξ (%) κr ·10-5 (m/s) Max Error κr (%) κz ·10-5 (m/s) Max Error κz (%) 
0 2.24 0.44 0.96 3.75 

0.5 2.25/2.23 0.88 0.87/1.00 13.11 
1 2.26/2.20 2.22 0.85/1.02 15.00 

1.5 2.27/2.20 2.22 0.80/1.15 20.00 
2 2.30/2.20 2.22 0.73/1.20 26.58 
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Figure 6.5. Maximum deviation of κr and κz as a function of ξ (numerical simulation). Same sign 

 
Figure 6.6. Maximum deviation of κr and κz as a function of ξ (numerical simulation). Different sign 

It can be observed that, while the horizontal hydraulic conductivity reaches a maximum error 

value of 2.22% (as happened with the dimensionless curves), the vertical conductivity presents 

a deviation between 23 and 26%, being these values quite similar to those obtained with the 

dimensionless abaci (20 and 25%). The error graphics in Figures 6.5 and 6.6 can be modified for 

the horizontal hydraulic conductivity κr, in order to separate the section of constant slope 

(statistic random error ξ between 0 and ± 1) and that of null slope (ξ between ± 1 and 2). This 

modification and its new trend lines are presented in Figures 6.7 and 6.8.  
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Figure 6.7. Modification of Figure 6.5 

 
Figure 6.8. Modification of Figure 6.6 

In light of these results, we can conclude that the horizontal hydraulic conductivity can be 

accurately estimated, even for statistics errors of 2%. Moreover, deviations are similar whether 

applying dimensionless curves or the protocol based on the network method. For the calculation 

of the vertical conductivity, the application of a statistic error of 0% presents a deviation of 0.4% 

with the curves and 3.75% with WaWSim, while the maximum deviation is around 25% for the 

maximum statistic error with both methodologies. This makes sense, since for the design of 
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protocol the validity range for the deviation, hs, was set between 0.001 and -0.001 because 

considering the same values as for the case of the groundwater flow variable (which were ten 

times larger), we did not get a satisfactory solution. In this way, we can see the need of 

accurately measuring the seepage surface if we want to obtain a precise vertical hydraulic 

conductivity. 
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Chapter VII. Simulation of scenarios 

 

 

 

In this chapter we present some simplified applications of each of the three scenarios to 

illustrate the potential versatility of the models developed in this thesis and explained in Chapter 

V. In the first example (Section VII.1), flow under a gravity dam without a sheet pile, two graphics 

are shown: flow net and pore pressure distribution under the dam. The variables studied in this 

case, which are groundwater flow, average exit gradient, uplift force under the dam and its 

application point are also depicted. Moreover, pore pressure distributions for different 

configurations are verified by comparing them to dimensionless pore pressure values that can 

be found in reference manuals.  

For the second scenario, flow under a gravity dam with a sheet pile at the dam toe (Section 

VII.2), three graphics are displayed: flow net, pore pressure distribution under the dam and pore 

pressure distribution along both sides of the sheet pile. The interest variables are also presented: 

groundwater flow, average exit gradient, uplift force and its application point and forces on both 

sides of the sheet pile and their application points. For this second example, the variable 

compared to values from reference manuals for different configurations is groundwater flow.  

The third example illustrates an unconfined aquifer with a pumping well (Section VII.3), for 

which the flow net and the iso-pressure lines are also presented, and the studied variables are 

groundwater flow and seepage surface, both provided by the code. For these scenarios, the 

seepage surface values are compared to those found in references.  
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VII. 1 Scenarios of flow under gravity dams without a sheet pile 

In order to exemplify this scenario, an anisotropic soil has been chosen. The geometrical 

parameters for the example are shown in Figure 7.1. 

 
Figure 7.1. Geometric data for the scenario of flow under dams without a sheet pile 

It is a dam with foundation in a soil which conductivities are κx = 0.0001 m/s y κy = 0.00005 m/s. 

From the data simulated by Ngspice, we can determine the variables of interest: groundwater 

flow (Q), uplift force under the dam (UF), application point of UF (C), and average exit gradient 

after the dam (Ie,ave). The results are summarized in Table 7.1. The application point is measured 

from the dam heel. In addition, the numerical simulation of this scenario leads to the flow net 

presented in Figure 7.2, while the pore pressure distribution is shown in Figure 7.3.  

Table 7.1. Summary of numerical results for the scenario of flow under gravity dams without a sheet pile 

Variable Value 

Groundwater flow, Q (m3/s) 0.000258 

Uplift force, UF (kN) 1487.44 

Application point, C (m) 9.82 

Average exit gradient, Ie,ave (dimensionless) 0.64 
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Figure 7.1. Flow net for the scenario of flow under gravity dams without a sheet pile (1V:10H) 

 
Figure 7.2. Pore pressure distribution for the scenario of flow under gravity dams without a sheet pile 

In order to show the versatility and effectiveness of the network models, deduced in this thesis 

employing the Network Simulation Method, we have compared its solutions with those 

presented by Harr [2012] for some isotropic scenarios. Pore pressure values have been turned 

into dimensionless and plotted together with those from Harr’s text in order to quantify the 

deviations. Figure 7.4 is the graphic with the comparisons while Table 7.2 shows the absolute 
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and relative deviations, where p’ is the dimensionless pore pressure value and x’ the 

dimensionless position under the dam.  

 
Figure 7.3. Comparison between Harr and simulated results 

Table 7.2. Results and comparison from Harr and simulations (pore pressure distribution) 

H/(wd/2) x’ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0 
p’ 

Harr 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 
Sim 0.89 0.79 0.70 0.60 0.50 0.40 0.30 0.21 0.11 

Abs. error 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 
Rel. error (%) 1.12 1.27 0.00 0.00 0.00 0.00 0.00 4.76 9.09 

0.25 
p’ 

Harr 0.88 0.78 0.68 0.59 0.50 0.41 0.32 0.22 0.12 
Sim 0.86 0.77 0.68 0.59 0.50 0.41 0.32 0.23 0.14 

Abs. error 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.02 
Rel. error (%) 2.33 1.30 0.00 0.00 0.00 0.00 0.00 4.35 14.29 

0.5 
p’ 

Harr 0.85 0.74 0.65 0.57 0.50 0.43 0.35 0.26 0.15 
Sim 0.83 0.75 0.66 0.58 0.50 0.42 0.34 0.25 0.17 

Abs. error 0.02 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.02 
Rel. error (%) 2.41 1.33 1.52 1.72 0.00 2.38 2.94 4.00 11.76 

1 
p’ 

Harr 0.82 0.71 0.63 0.56 0.50 0.44 0.37 0.29 0.18 
Sim 0.81 0.72 0.65 0.57 0.50 0.43 0.35 0.28 0.19 

Abs. error 0.01 0.01 0.02 0.01 0.00 0.01 0.02 0.01 0.01 
Rel. error (%) 1.23 1.39 3.08 1.75 0.00 2.33 5.71 3.57 5.26 

Inf 
p’ 

Harr 0.80 0.69 0.62 0.55 0.50 0.45 0.38 0.31 0.20 
Sim 0.79 0.70 0.63 0.56 0.50 0.44 0.37 0.30 0.21 

Abs. error 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 
Rel. error (%) 1.27 1.43 1.59 1.79 0.00 2.27 2.70 3.33 4.76 
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The deviations between the values from the literature and those simulated in this thesis are 

somehow expected and partially justified by the fact that Harr considered that the upstream 

and downstream horizontal lengths of the domain are infinite, a condition that cannot be 

expressly applied in the simulations. However, very large horizontal lengths in both sides of the 

domain have been adopted so that the border effects are as low as possible (all isopotential 

lines appear under the structure). The same happens for the scenario in which ୌ

୵ౚ ଶ⁄
 is infinite. 

The relative difference between the theoretical and the simulated value is below 10%, except 

for some cases of x’=0.9, where it is not larger than 15%. However, this relative difference that 

seems high is basically caused because two small values are compared. The absolute deviations 

are not different to other points of the same distribution which are located closer to the dam 

heel.  

Another result that we can verify with this example is the fact that equal dimensionless scenarios 

(with the same monomials) always lead to equivalent flow nets or solution patterns. Since the 

monomials that summarize the example are π1 = 0.5, π2 = 0.1, π3 = 5 y π4 = 1, we simulate a new 

scenario whose vertical parameters (stratum thickness, foundation depth and vertical hydraulic 

conductivity) are kept constant, but the horizontal parameters are modified, maintaining the 

value of the dimensionless monomials. The data for the second simulation are a = b = 240 m, wd 

= 48 m y κx = 0.0004 m/s. The flow net presented in Figure 7.5 is practically identical to that 

shown in Figure 7.2, although the horizontal lengths have been changed. As we wanted to prove, 

we would have the same dimensionless flow net.  

 
Figure 7.4. Flow net for an equivalent scenario of flow under dams without a sheet pile (1V:10H) 
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In order to deepen in this comparison of scenarios, we study two points of the flow net, showing 

that, although they have different dimensional position, they are found in the same 

dimensionless location and, therefore, have the same hydraulic potential value. These results 

appear in Table 7.3. 

Table 7.3. Comparisons of points from the two simulations 

Point Dimensionless 
results Dimensional results 

1 x’ = 0.385, y’ = 0.83, 
h’ = 0.95 

x= 101.63 m, y = 10 m, h = 9.5 m 

x = 203.25 m, y = 10 m, h = 9.5 m 

2 x’ = 0.565, y’ = 0.67, 
h’ = 0.15 

x = 149.25 m, y = 8 m, h = 1.5 m 

x = 298.5 m, y = 8 m, h = 1.5 m 

 

VII. 2 Scenarios of flow under gravity dams with a sheet pile  

In this example an anisotropic medium and a dam without foundation is considered. The 

geometrical parameters for this example are shown in Figure 7.6.  

 
Figure 7.6. Geometric data for the scenario of flow under dams with a sheet pile 

The hydraulic conductivity of the soil is κx = 0.00009 m/s for horizontal and y κy = 0.00004 m/s 

for the vertical. Once the simulation and the calculations are carried out, the code leads to the 

following graphical solutions: flow net (Figure 7.7), pore pressure distribution under the dam 

(Figure 7.8) and pore pressure distribution along both sides of the sheet pile (Figure 7.9).  
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Figure 7.7. Flow net for the scenario of flow under gravity dams with a sheet pile (3V:20H) 

 
Figure 7.8. Pore pressure distribution for the scenario of flow under gravity dams with a sheet pile 
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Figure 7.9. Pore pressure distribution along the sheet pile (upstream side and downstream side) 

Moreover, from the solutions that Matlab imports from Ngspice we can mathematically 

calculate (with enough accuracy for not excessively large meshes) the most interest numerical 

variables: groundwater flow (Q), uplift force under the dam (UF), application point of UF (C), 

average exit gradient (Ie,ave), force on the upstream side of the sheet pile (FUS), application point 

of FUS (CUS), force on the downstream side of the sheet pile (FDS)and application point of FDS (CUS). 

The application points of the forces on the sheet pile are measured from its upper border. These 

results are shown in Table 7.4. 

Table 7.4. Summary of numerical results for the scenario of flow under gravity dams with a sheet pile 

Variable Value 

Groundwater flow, Q (m3/s) 0.000271 

Uplift force, UF (kN) 1456.56 

Application point, C (m) 10.16 

Average exit gradient, Ie,ave (dimensionless) 0.50 

Force on the upstream side of the sheet 
pile, FUS (kN) 243.21 

Application point of FUS, CUS (m) 2.17 

Force on the downstream side of the sheet 
pile, FDS (kN) 121.39 

Application point of FDS (m) 2.69 
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In order to verify again the accuracy of the model by comparing its results to analytical solutions 

found in literature (dimensionless curves in Harr [2012]), we have compared values of 

groundwater flow in isotropic scenarios with a sheet pile located in the centre of the dam base. 

As far as we know, there are not universal solutions for anisotropic scenarios. The length of the 

sheet pile is 30% of the simulated stratum. The results and deviations between the theoretical 

and simulated results are shown in Table 7.5. 

Table 7.5. Results and comparison from Harr and simulations (groundwater flow) 

wd/H QHarr Qsim (m3/s) ·10-4 Qsim Abs. error Error (%) 
0* 0.66 6.69 0.67 0.01 1.36 

0.25 0.59 5.92 0.59 0.00 0.33 
0.5 0.48 4.75 0.48 0.00 1.04 

0.75 0.39 3.89 0.39 0.00 0.26 
1 0.33 3.27 0.33 0.00 0.91 

1.25 0.28 2.82 0.28 0.00 0.71 
1.5 0.25 2.47 0.25 0.00 1.20 

 

The symbol * in Table 7.5 means that, as that ratio value cannot be simulated, a scenario that 

tends to that ratio has been chosen. Moreover, from the table we can conclude that the 

numerical solution is very close to that presented in Harr’s text (errors lower than 1.5%). These 

differences can appear because of the chosen reticulation and the fact that we cannot simulate 

scenarios that are infinite in the horizontal direction, which is what Harr supposed. 

VII. 3 Scenarios of flow in unconfined aquifers due to a pumping well 

In order to show the versatility of the developed code, an anisotropic domain in radial 

coordinates is presented. Its geometrical parameters are those in Figure 7.10. 
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Figure 7.10. Geometric data for the scenario of flow in unconfined aquifers due to a pumping well 

The hydraulic conductivities for the scenario are κr = 0.00008 m/s y κz = 0.00004 m/s. The 

graphical solution, common to the previous examples, is a flow net (where the iso-potential lines 

and the streamlines are shown, Figure 7.11), although, in this case, it is complemented with iso-

pressure lines. Employing the last iso-pressure lines, we can somehow approximate to the limit 

known as free surface. Due to the behaviour of the software, where the switches allow not 

considering those zones where the hydraulic potential is lower to its position, we cannot know 

the streamline which corresponds to the 100% flow (or, equivalently, the free surface line for 

problems in which the capillary flow is not studied). For this reason, we try to give an 

approximate limit with the iso-pressure line of 1 kPa.  

The variables that can be calculated from the solutions provided by Ngspice are abstracted 

volume of water (Q) and the seepage surface (hs). For the simulated scenario, the values for 

these variables are shown in Table 7.6. 

Table 7.6. Summary of numerical results for the scenario of flow in unconfined aquifers due to a pumping well 

Variable Value 

Pumped groundwater flow, Q (m3/s) 0.00741 

Seepage surface (hs) 7.82 
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Figure 7.11. Flow net and pore pressure distribution for the scenario of flow in unconfined aquifers due to a 

pumping well 

Again, with the aim of verifying the model, we have simulated some of the scenarios presented 

by Hall [1955], who obtained the seepage surface with experimental tests. The set of tests that 

has been chosen is that named by Hall as ‘A’, since these were ‘ideally’ carried out (the sand 

samples were saturated before performing the tests, constant temperature, etc). Seepage 

surface values obtained by Hall and those calculated with the code are shown in Table 7.7, 

together with the absolute and relative deviations.  

Table 7.7. Results and comparison from Hall tests and simulations (seepage surface) 

Test hs, Hall (m) hs, sim (m) Abs. 
error 

Rel. error 
(%) 

A-1 1.107 1.107 0.000 0.000 
A-2 1.043 1.057 0.014 1.342 
A-3 0.945 0.945 0.000 0.000 
A-4 0.902 0.902 0.000 0.000 
A-5 0.864 0.864 0.000 0.000 
A-6 0.848 0.852 0.004 0.472 
A-7 0.833 0.818 0.015 1.801 
A-8 0.833 0.821 0.012 1.441 

 

Table 7.7 shows that errors are quite low, in every case lower than 2% and in many of them 

lower than 1%, which demonstrate the reliability of our model. 
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Chapter VIII. Contributions and conclusions 

 

 

In this PhD thesis three problems of flow through porous media in the field of Ground 

Engineering have been studied: flow under gravity dams without a sheet pile, flow under gravity 

dam with a sheet pile and flow in unconfined aquifers due to pumping wells. For this, two 

different approaches have been employed. On the one hand, a protocol based on the 

discriminated nondimensionalization technique has been followed to deduce the dimensionless 

monomials that rule the processes. On the other hand, specific numerical models have been 

developed using the network method to carry out the numerical simulations. These simulations 

have allowed verifying the dimensionless groups and depicting the universal curves that present 

the relation among the monomials. In addition, as consequence of this research, the following 

results have been obtained: software for the simulation of the scenarios, a protocol based on 

the inverse problem for estimating the hydraulic properties, and a deep study of the dimensional 

character of permeability and hydraulic conductivity.  

The most important contributions of the three approached problems are the following: 

i) Flow under gravity dams without a sheet pile at its base 

Employing the discriminated nondimensionalization technique, four monomials were obtained 

involving geometrical and hydrogeological parameters of the scenario. The monomial with 

highest influence on the unknown variables, and therefore called π1, is the ratio of the hydraulic 

conductivities affected by an aspect factor, and it was derived from the nondimensionalization 

of the governing equation. The other three dimensionless groups are simply defined as 

discriminated ratios of lengths in the same direction.  
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The unknown dimensionless variables studied in this problems were groundwater flow, pore 

pressure distribution under the dam (which can also be presented as an uplift force and its 

application point) and average exit gradient. From numerical simulations, twenty-one abaci have 

been depicted, each of them involving 7-9 curves.  

If comparing these results to those previously shown in reference manuals, the main advance of 

this thesis is the consideration of anisotropy. In this way, since most of the soils on which dams 

are built have larger values of hydraulic conductivity in the horizontal than in the vertical 

direction, the use of the curves presented would lead to more realistic results. Furthermore, the 

use of the discriminated nondimensionalization technique has also led to the correct expression 

of the most important monomial, π1, in which the aspect factor affecting the conductivity ratio 

involves the square values of the employed lengths.  

To simplify the graphical representation of the unknown variables, the value of last monomial, 

π4, which is the ratio of the upstream and downstream length and gives information about the 

symmetry of the scenario, is always 1. For each of the unknown dimensionless variables, abaci 

reflect how they are affected by the data groups. Apart from the relation presented with the 

curves, two main aspect can be highlighted: 

- Although data monomials change the behaviour of the dimensionless curves of the pore 

pressure distribution, the dimensionless uplift force always presents a value of 0.5.The 

dimensionless application point is the variable that shows the effect of the groups 

governing the scenario. 

- Not only has the anisotropy of the soil affected the definition of the governing group, 

π1, but also the area in which the average exit gradient has been calculated. 

ii) Flow under gravity dams with a sheet pile at its base 

In this case, two new discriminated monomials appear, one involving the position of the sheet 

pile at the dam base and another that is the ratio of the pile length and the stratum thickness. 

Variables of this scenario are also highly affected by π1, and, in order to study the effects of the 

new data monomials, these, together with π1 are the chosen monomials depicted in the abaci: 

the dam has no foundation (π2 = 0), and the horizontal upstream and downstream lengths are 

very large (π3 = 20 and π4 = 1). 

Apart from those dimensionless unknowns studied for scenarios without a sheet pile, new 

unknowns have appeared in this case because of the pile located under the dam: forces on both 

sides of the sheet pile caused by the pore pressure and their application point. Therefore, 
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seventeen abaci have been plotted, having each of them nine curves that relate the unknown 

variables with the data monomials.  

As occurred with the scenario without a sheet pile, the main difference between the results 

obtained in this thesis and those in manuals is that isotropic and anisotropic soils can be 

characterized employing the curves presented in this document, leading to more accurate 

results. Monomial π1 has the same expression in both scenarios, so the same advantages and 

comments have also been applied in this second problem.  

Important behaviours can be noted in this problem: 

- As regard dimensionless groundwater flow, it presents the same values when the sheet 

pile is placed at symmetrical points at the dam base (for example, dam heel and toe), 

having a maximum when the pile is located at the centre of the dam base.  

- Focusing on the uplift force, its behaviour is also related to the symmetrical position of 

the pile, since values of the variables when the pile is at the dam toe are symmetrical to 

those for a pile at the heel respect to a horizontal axis of a value of 0.5.  

- Studying the uplift force in scenarios of a sheet pile at the centre of the dam base, it was 

observed that it presents the same value as scenarios of dam without a sheet pile, not 

being affected by any of the other monomials involved. 

- The dimensionless results of the forces on both sides of the sheet pile are also influenced 

by symmetry when locating the pile. In this case, the relation is more complex to find:  

 The value of the force on the upstream side of the pile when it is placed 

at the heel is related to that of the force on the downstream side of the pile when 

it is placed at the toe.  

 The force of the upstream side of the pile when located at the toe is 

related to that of the force on the downstream side of the pile when located at 

the heel.  

 When the pile is at the centre, the forces on both sides are related.  

iii) Flow in unconfined aquifers due to pumping wells 

The use of the discriminated nondimensionalization technique in this scenario has led to three 

discriminated groups that rule the problem: again, one involving a ratio of conductivities 

affected by an aspect factor, and two which simply relate lengths in the same direction. The 

dimensionless unknowns studied in the scenario are groundwater flow, seepage surface and 

influence radius, and they are presented in abaci with different number of curves each of them: 
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groundwater flow abacus has four curves, seepage surface thirty, and there is one curve in each 

of the abaci for influence radius. 

Apart from the consideration of soil anisotropy, there are more differences between the 

approach of the scenario in this thesis and more traditional ones: not only is radial flow 

considered, but also vertical one; therefore, the values of the seepage surface can be accurately 

calculated. Different aspects should be noted from this scenario: 

- Conductivity monomial, also named π1, has so little effect on the dimensionless 

groundwater flow (differences of around 2%) that it has not been necessary to depict 

one curve for each value of π1.  

- In a similar way, when calculating the dimensionless values of the influence radius, it 

was not affected by π3, which is the ratio of the water potential at the well and the initial 

value of the aquifer. This has simplified the graphical representation of the variable.  

- If keeping all parameters constant but the vertical hydraulic conductivity, as this 

parameter decreases, the value of the seepage surface increases because radial flow 

becomes more important.  

As commented before in this chapter and throughout the thesis, the basic structure of two tools 

based on the Network Method have been developed for obtaining the points of the 

corresponding abaci: DamSim, a software for simulating flow under dams with and without a 

sheet pile (in registration process), and the software WaWSim for problems of flow in 

unconfined aquifers due to a pumping well (in development process because transient state will 

be also included in the final version). Both software present numerical and graphical solutions, 

such as groundwater flow or flow net, in a window environment. These software program are 

free, versatile and easy-to-use tools accessible to all scientific community.  

In connection to the discussion of permeability and hydraulic conductivity, their dimensional 

character has been demonstrated to be ambiguous and imprecise from the point of view of their 

physical meaning. It is an issue on which the agreement has not been reached in literature. For 

this aim, a research line that applies the concept of dimensional discrimination to the physical 

properties involved in permeability (grain size, tortuosity, connectivity, etc) has been followed. 

The same protocol has been employed to successfully assign accurate dimension to the 

hydraulic conductivity and to discriminate these dimensions (according to their direction) when 

studying anisotropic media. This result was confirmed by the proposed procedure of 

discriminated nondimensionalization of the governing equation, expressed in terms of any of 

the common potential variables (pressure, hydraulic potential or water head, etc). The results 
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go beyond those that would be derived employing classical techniques for obtaining 

dimensionless groups and, in fact, have allowed characterizing anisotropic scenarios in an 

accurate way for all the studied problems. In this way, if traditional dimensions of hydraulic 

conductivity were [κ]=LT-1, after this research, and using x direction as an example to employ 

discriminated dimensions, [κx]=Lx
2T-1Lwc

-1, with Lwc the dimension of water potential variable. 

Introducing discrimination and the dimension of the potential variable in the dimensional basis 

has led to the monomials that relate conductivities in anisotropic scenarios.  

Finally, as regards the inverse problem of flow in unconfined aquifers due to a pumping well, 

employing WaWSim and the universal abaci of the scenario, protocols have been designed to 

calculate radial and vertical conductivities. The expected deviation has been calculated with an 

application following both methodologies. Moreover, the effect of possible deviations (measure 

errors) of field parameters, groundwater flow and seepage surface, in the conductivity values is 

presented.  

In future research, aspects that have not been studied in this thesis can be approached. Since 

dam scenarios have only been characterized and modelled with and without a sheet pile, a 

possible investigation line might deal with the location two or more sheet piles under the dam. 

Furthermore, it would also be interesting to obtain abaci for overall resulting force on sheet 

pile(s) and application point, which is a more summarized way to present the dimensionless 

values. Considering pumping wells in unconfined aquifers, this work has only focused on steady-

state scenarios with a single, fully-penetrating well, so possible advances in this topic could be 

transient-state problems and partial penetrating structures, in order to develop universal 

solutions and inverse problems. Another phenomenon that might be considered in future 

investigations is rewetting. These tasks, addressed with more sophisticated models, would also 

allow the research of flow through earth dams.  
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